Uniformization of Sierpiński carpets by square carpets

Dimitrios Ntalampekos dimitrisnt@math.ucla.edu

Quasisymmetric uniformization

Uniformization is the problem of transforming a given metric space X to a canonical space with a map that preserves the geometry. In the metric space setting we are interested in quasisymmetric maps.

A homeomorphism $f: X \to Y$ between metric spaces X, Y is a **quasisymmetry** if there exists a homeomorphism $\eta: [0, \infty) \to [0, \infty)$ called the *distortion function* such that for every triple $x, y, z \in X$:

$$\frac{d(x,y)}{d(x,z)} \le t$$
 implies $\frac{d(f(x),f(y))}{d(f(x),f(z))} \le \eta(t)$.

"A quasisymmetry quasi-preserves relative distances, instead of absolute distances".

Sierpiński carpets

Construction of a planar Sierpiński carpet S.

Let $\Omega \subset \mathbb{C}$ be a Jordan region, and $Q_i \subset \Omega, i \in \mathbb{N}$ be Jordan regions such that:

- $\overline{Q}_i \cap \overline{Q}_j = \emptyset$ and $\overline{Q}_i \cap \partial \Omega = \emptyset$
- $\operatorname{diam}(\mathring{Q}_i) \to 0$
- $S := \overline{\Omega} \setminus \bigcup_{i=1}^{\infty} Q_i$ has empty interior.

 $\partial Q_i, \partial \Omega =:$ peripheral circles of the carpet S. **Fact:** All Sierpiński carpets are homeomorphic to each other [5].

Geometric assumptions

A Jordan curve J is a k-quasicircle if for every two points $x,y\in J$ there exists an arc $\gamma\subset J$ connecting x and y such that

$$\operatorname{diam}(\gamma) \le k|x - y|.$$

Two continua E, F are δ -relatively separated if

$$\frac{\operatorname{dist}(E, F)}{\min\{\operatorname{diam}(E), \operatorname{diam}(F)\}} \ge \delta.$$

The peripheral circles of a carpet S are uniform quasicircles if they all are k-quasicircles for some k > 0.

The peripheral circles are uniformly relatively separated if every pair of them is δ -relatively separated for some $\delta > 0$.

Round carpets

Bonk [1] proved the following uniformization result for carpets:

Theorem. Let $S \subset \mathbb{C}$ be a Sierpiński carpet whose peripheral circles are uniformly relatively separated, uniform quasicircles. Then there exists a quasisymmetry from S onto a round carpet.

Main Theorem

A square carpet is a carpet whose peripheral circles are squares, except possibly for $\partial\Omega$, which is a rectangle, and all their sides are parallel to the coordinate axes. The main result in [3] is the following:

Theorem. Let $S \subset \mathbb{C}$ be a Sierpiński carpet whose peripheral circles are uniformly relatively separated, uniform quasicircles. Furthermore, assume that Area(S) = 0. Then there exists a quasisymmetry from S onto a square carpet.

Why square carpets? Square carpets arise naturally as extremal domains for a minimizing problem.

Remark. If we remove the assumption of uniform relative separation, and weaken the assumption of uniform quasicircles to (e.g.) uniform *John domains*, then the uniformizing map is *not* quasisymmetric in general, but it is "quasiconformal" in a discrete sense.

Idea of proof

We develop a theory of harmonic functions on Sierpiński carpets in [2], and then follow the steps of Rajala [4] to prove the uniformization theorem.

A function $u: S \to \mathbb{R}$ lies in the carpet-Sobolev space $\mathcal{W}^{1,2}(S)$ if it satisfies the L^2 -integrability conditions

$$\sum_{i=1}^{\infty} \sup_{\partial Q_i} (u)^2 \operatorname{diam}(Q_i)^2 < \infty \quad \text{and} \quad \sum_{i=1}^{\infty} \operatorname{osc}_{\partial Q_i} (u)^2 < \infty,$$

and $\{\operatorname{osc}_{\partial Q_i}(u)\}_{i\in\mathbb{N}}$ is an *upper gradient* of u, i.e. for almost every path $\gamma\subset\overline{\Omega}$ and points $x,y\in\gamma\cap S$ we have

$$|u(x) - u(y)| \le \sum_{i:\gamma \cap Q_i \ne \emptyset} \underset{\partial Q_i}{\operatorname{osc}}(u).$$

The Dirichlet Energy of u is $D(u) := \sum_{i=1}^{\infty} \operatorname{osc}_{\partial Q_i}(u)^2$.

We mark two sides Θ_1 , Θ_3 on $\partial\Omega$ as in the figure. Consider the problem of *minimizing* the Dirichlet Energy D(u) among all functions $u \in \mathcal{W}^{1,2}(S)$ with $u \equiv 0$ on Θ_1 and $u \equiv 1$ on Θ_3 . A solution to this problem exists, is *carpet-harmonic*, and it is continuous on S. This is the **real part** of the uniformizing function f.

To define the **harmonic conjugate** v of u we need to "integrate ∇u over the level sets of u". If $x \in u^{-1}(t)$ and γ_x is the subpath of $u^{-1}(t)$ from the "bottom" to x, then

$$v(x) \coloneqq \sum_{i:\gamma_x \cap Q_i \neq \emptyset} \underset{\partial Q_i}{\operatorname{osc}}(u)$$

This definition works for a.e. level t, and gives a continuous function v in $\mathcal{W}^{1,2}(S)$. For the pair f = (u, v) one has:

- (i) It is a **homeomorphism** onto a square carpet \mathcal{R} , contained in $[0,1] \times [0,D(u)]$.
- (ii) It is "quasiconformal" in a discrete sense, namely it preserves a notion of *carpet-modulus*. This is because f is "absolutely continuous on lines" and maps the peripheral circles of S to the peripheral circles of \mathcal{R} .
- (iii) It is **quasisymmetric**. This follows from the principle that "a quasiconformal map from a Loewner space onto a LLC space is quasisymmetric". That principle also holds in our discrete setting, and uses the geometric assumptions of uniform relative separation and uniform quasicircles.

References

- [1] M. Bonk, Uniformization of Sierpiński carpets in the plane, Invent. Math.
- [2] D. Ntalampekos, *Harmonic functions on Sierpiński carpets*, In preparation.
- [3] _____, Uniformization of Sierpiński carpets by square carpets, In preparation.
- [4] K. Rajala, Uniformization of two-dimensional metric surfaces, Invent. Math.
 [5] G.T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math.