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The Lipschitz-volume rigidity problem

Problem

Let f : X →Y be a 1-Lipschitz and surjective map between metric

spaces that have the same volume. Is f an isometry?

Lipschitz map: dY (f (x), f (y))≤ LdX (x ,y)

Theorem (Folklore, Burago�Ivanov, Besson�Courtois�Gallot)

If X ,Y are closed Riemannian n-manifolds, then yes.

Extensions to singular settings:

Alexandrov spaces (Storm, Li)

Limit RCD spaces (Li�Wang)

Integral current spaces (Basso-Creutz�Soultanis, Del

Nin�Perales, Züst)
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Metric surfaces

Metric surface X :

topological 2-dimensional manifold with a metric

locally �nite area (Hausdor� 2-measure)

Theorem (Meier�N. 2023)

Let X be a closed metric surface and Y be a closed Riemannian

surface with the same area. Then every 1-Lipschitz map from X
onto Y is an isometry.
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Metric surfaces

Let f : X →Y be 1-Lipschitz and surjective and H 2(X )=H 2(Y ).

H 2(Y )=H 2(f (X )) (surjective)

≤H 2(f (A))+H 2(f (X \A))

≤H 2(A)+H 2(X \A) (1-Lipschitz)

=H 2(X ) (A measurable)

=H 2(Y ) (equal area)

Therefore, H 2(f (A))=H 2(A) for each measurable set A⊂X .

f is area-preserving

Theorem (Meier�N. 2023)

Let X ,Y be metric surfaces without boundary and f : X →Y be

area-preserving, 1-Lipschitz, and surjective. If Y is Riemannian,

then f is an isometry.
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What is special about metric surfaces?

Theorem (Uniformization Theorem, Koebe, Poincaré 1907)

Every simply connected Riemannian surface can be conformally

uniformized by the complex plane or the unit disk or the Riemann

sphere.

f

f conformal: balls −→ balls (or squares → squares) in in�nitesimal

scale
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Geometric de�nition of quasiconformality

X metric surface

Γ family of curves in X

ρ : X → [0,∞] is admissible for Γ if

∫
γ
ρds ≥ 1 for all γ ∈ Γ

Mod Γ= inf
ρ

∫
X
ρ2dH 2 −→ Outer measure on curve families

f conformal: Mod Γ=Mod f (Γ)

f quasiconformal: K−1Mod Γ≤Mod f (Γ)≤KMod Γ
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Properties of modulus in the plane

Γ(Q)

Γ∗(Q)

Mod Γ(Q) ·Mod Γ∗(Q)= 1

Mod Γ= 0

Mod Γ> 0
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Quasiconformal uniformization

(Quasi)conformal parametrization f : C→X

=⇒ The family of (non-constant) curves passing through each point

has modulus zero

1 Finite area

2 Smooth except for one point P

3 The family of curves passing

through P has positive modulus.

=⇒

No quasiconformal parametrization
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Quasiconformal uniformization

Magic Ball

Designed by:

Yuri Shumakov

Presented by:

Jo Nakashima

1 Length-isometric to cylinder outside poles

2 The family of curves through poles has positive modulus

3 Not quasiconformal to sphere

Question

Is this the only enemy?
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Quasiconformal uniformization

Question

Is this the only enemy?

Let C ⊂R2 Cantor set. Set ω=χR2\C .

dω(z ,w)= inf
γ

∫
γ
ωds

(R2,dω) is homeomorphic to R2

If |C | > 0 then (R2,dω) is not quasiconformal to R2 (Rajala)

Near density points

Mod Γ(Q)Mod Γ∗(Q)→∞
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Quasiconformal uniformization

Theorem (Rajala 2017)

Let X be a metric 2-sphere. There exists a quasiconformal map

f : Ĉ→X if and only if X is reciprocal.

Reciprocity conditions:

1 The family of non-constant curves passing through each point x
has modulus zero.

lim
r→0

Mod Γ(B(x ,r),X \B(x ,R))= 0

2 For each topological quadrilateral Q:

Γ(Q)

Γ∗(Q)

κ−1 ≤Mod Γ(Q) ·Mod Γ∗(Q)≤ κ
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Quasiconformal uniformization

If X is reciprocal, there exists f with
π
4
Mod Γ≤Mod f (Γ)≤ π

2
Mod Γ (Rajala, Romney)

Optimal constants attained by id :R2 →X = (R2,ℓ∞)

X Ahlfors 2-regular and LLC

=⇒ Quasiconformal maps are quasisymmetric

=⇒ Bonk�Kleiner Theorem

For every surface

κ−1 ≤Mod Γ(Q) ·Mod Γ∗(Q) (Rajala�Romney)

κ−1 = (π/4)2 (Eriksson-Bique�Poggi-Corradini)

X is reciprocal if and only if

Mod Γ(Q) ·Mod Γ∗(Q)≤ κ (N.�Romney)

If the modulus of curves passing through each point is zero,

then X is not necessarily reciprocal. (N.�Romney)
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Uniformization of arbitrary surfaces

Theorem (N.�Romney 2022)

Every metric surface admits a weakly quasiconformal

parametrization by a Riemannian surface.

Corollary

Every metric 2-sphere admits a weakly quasiconformal

parametrization by the Riemann sphere.

X ,Y metric surfaces without boundary

f : X →Y weakly quasiconformal:

Uniform limit of homeomorphisms

ModΓ≤KMod f (Γ)

f : Ĉ→X is QC if and only if X is reciprocal

Earlier versions for locally geodesic and length surfaces

(Meier�Wenger 2021, N.�Romney 2021)
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Example

f

1 f is weakly quasiconformal

2 f is not injective in black balls around poles

3 f is conformal outside black balls

Problem

If the modulus of curves passing through a point p ∈X is positive,

does there exist a WQC parametrization from a smooth surface

that maps a disk to the point p?
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Summary

Riemannian surfaces −→ conformal parametrization

(also polyhedral surfaces, Aleksandrov surfaces)

Reciprocal surfaces −→ quasiconformal parametrization

Largest class of surfaces so that modulus in local coordinates

is the same as modulus on surface

Metric surfaces −→ weakly quasiconformal parametrization
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Area-preserving and Lipschitz maps between surfaces

Theorem (Meier�N.)

Let f : X →Y be area-preserving 1-Lipschitz, and surjective. If Y is

Riemannian then f is an isometry.

First step: Preservation of length

Question

If f is area-preserving and Lipschitz, does it quasi-preserve the

length of Mod-a.e. path?

K−1ℓ(γ)≤ ℓ(f ◦γ)≤Kℓ(γ)

Yes if X is reciprocal (Meier�N.).

Yes if X 2-recti�able (Creutz�Soultanis).

f need not be injective:

I = [0,1]× {0}, Y =R2/I , f : R2 →R2/I projection
Then f is area-preserving and 1-Lipschitz but not injective.
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Area-preserving and Lipschitz maps between surfaces

Theorem (Meier�N.)

Let f : X →Y be area-preserving, Lipschitz, and surjective. If Y is

reciprocal, then f is a K -quasiconformal homeomorphism and

K−1ℓ(γ)≤ ℓ(f ◦γ)≤Kℓ(γ)

for Mod-a.e. curve γ. If f is 1-Lipschitz, then K = 1.

f does not preserve the length of every curve:

Let ω(x ,0)= x , 0≤ x ≤ 1, and ω(x ,y)= 1 otherwise. De�ne

d(z ,w)= inf
γ

∫
γ
ωds

The identity id: R2 → (R2,d) is 1-Lipschitz, 1-quasiconformal but

ℓd ([0,t])= t2/2
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Area-preserving and Lipschitz maps between surfaces

Y is upper Ahlfors 2-regular if H 2(B(x ,r))≤Cr2 ⇒ Reciprocal

Theorem (Meier�N.)

Let f : X →Y be area-preserving, Lipschitz, and surjective. If Y is

upper Ahlfors 2-regular, then f is a homeomorphism and

K−1ℓ(γ)≤ ℓ(f ◦γ)≤Kℓ(γ)

for every curve γ.

In general we do not have K = 1:

Let ω(x ,0)= 1/2, 0≤ x ≤ 1, and ω(x ,y)= 1 otherwise. De�ne

d(z ,w)= inf
γ

∫
γ
ωds

(R2,d) is bi-Lipschitz to R2

but ℓd ([0,1])= 1/2 ̸= ℓ([0,1]).
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Area-preserving and Lipschitz maps between surfaces

Theorem (Meier�N.)

Let f : X →Y be area-preserving, 1-Lipschitz, and surjective. If Y
is Riemannian then f is an isometric homeomorphism.

Proof sketch:

f is a 1-QC homeomorphism, preserves length of a.e. curve.

Let γ be a curve in Y . Claim: ℓ(f −1 ◦γ)≤ ℓ(γ).
γt = curve at distance t from γ

Coarea inequality in Riemannian manifolds:∫ r

0
ℓ(γt)dt ≤H 2(Nr (|γ|)).

Area bound in Riemannian manifolds:

H 2(Nr (|γ|))≤ 2rℓ(γ)+O(r2) as r → 0.

γt
γ
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Proof sketch

γt
γ

We have

r ·essinf
t∈(0,r)

ℓ(γt)≤
∫ r

0
ℓ(γt)dt ≤ 2rℓ(γ)+O(r2).

There exists a sequence tn → 0 such that

ℓ(γtn)≤ 2ℓ(γ)+o(1)

ℓ(γtn)= ℓ(f −1 ◦γtn)
By lower semi-continuity of length

2ℓ(f −1 ◦γ)≤ liminf
n→∞ ℓ(f −1 ◦γtn)≤ 2ℓ(γ).
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Coarea inequality

Theorem (Federer)

Let X ⊂R2 and u : X →R be a continuous function in W 1,1
loc (X ).

Then ∫ ∫
u−1(t)

g dH 1dt =
∫
X
g · |∇u|dH 2

for all Borel functions g : X → [0,∞].

Theorem (Eilenberg)

Let X be a metric space and u : X →R be a Lipschitz function.

Then ∫ ∗ ∫
u−1(t)

g dH 1dt ≤ 4

π

∫
X
g ·Lip(u)dH 2

for all Borel functions g : X → [0,∞].

Lip(u)(x)= limsup
y→x

|u(x)−u(y)|
d(x ,y)

.
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Coarea inequality

How does the coarea inequality generalize to Sobolev functions in

metric spaces?

ρ is an upper gradient of u if

|u(x)−u(y)| ≤
∫
γ
ρds

for all curves γ and points x ,y on γ.

ρ is a (2-)weak upper gradient of u if this is true for Mod-a.e.
curve γ.

ρ plays the role of |∇u|
We would like to have a coarea inequality with a weak upper

gradient of u in place of |∇u|, Lip(u)
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Coarea inequality

Can we have

∫ ∗ ∫
u−1(t)

g dH 1dt ≤ 4

π

∫
X
g ·ρdH 2?

No! (Esmayli�Ikonen�Rajala)

C ⊂R2 Cantor set of positive area

X metric surface in R3 containing C such that a.e. curve in X
does not �see� C

u(x ,y ,z)= x Lipschitz function, weak upper gradient ρ|C = 0

For g =χC ,
∫
C g ·ρdH 2 = 0

Fubini:
∫ ∫

u−1(t)χCdH 1dt =Area(C )> 0
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Theorem (Esmayli�Ikonen�Rajala)

Let X be a metric surface and u : X →R be continuous and

monotone function with a 2-weak upper gradient ρ ∈ L2loc(X ).
Then ∫ ∗ ∫

u−1(t)
g dH 1dt ≤ 4

π

∫
X
g ·ρdH 2

for all Borel functions g : X → [0,∞].

Theorem (Meier�N.)

Let X be a metric surface and u : X →R be continuous function

with a 2-weak upper gradient ρ ∈ L2loc(X ). Then∫ ∗ ∫
u−1(t)∩Au

g dH 1dt ≤ 4

π

∫
X
g ·ρdH 2

for all Borel functions g : X → [0,∞].

Au = non-degenerate components of level sets of u
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Thank you!
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