Lipschitz-volume rigidity for metric surfaces

Dimitrios Ntalampekos

Stony Brook University

Geometry and Analysis on Metric Surfaces The Institute of Mathematics of Polish Academy of Sciences Warsaw, Poland

July 1 - 4, 2024

Problem

Let $f: X \rightarrow Y$ be a 1-Lipschitz and surjective map between metric spaces that have the same volume. Is f an isometry?

Lipschitz map: $d_Y(f(x), f(y)) \leq L d_X(x, y)$

Theorem (Folklore, Burago-Ivanov, Besson-Courtois-Gallot)

If X, Y are closed Riemannian n-manifolds, then yes.

Extensions to singular settings:

- Alexandrov spaces (Storm, Li)
- Limit RCD spaces (Li-Wang)
- Integral current spaces (Basso-Creutz-Soultanis, Del NinPerales, Züst)

Metric surface X:

- topological 2-dimensional manifold with a metric
- locally finite area (Hausdorff 2-measure)

Theorem (Meier-N. 2023)

Let X be a closed metric surface and Y be a closed Riemannian surface with the same area. Then every 1-Lipschitz map from X onto Y is an isometry.

Metric surfaces

Let $f: X \to Y$ be 1-Lipschitz and surjective and $\mathcal{H}^2(X) = \mathcal{H}^2(Y)$.

$$
\mathcal{H}^{2}(Y) = \mathcal{H}^{2}(f(X))
$$
 (surjective)
\n
$$
\leq \mathcal{H}^{2}(f(A)) + \mathcal{H}^{2}(f(X \setminus A))
$$

\n
$$
\leq \mathcal{H}^{2}(A) + \mathcal{H}^{2}(X \setminus A)
$$
 (1-Lipschitz)
\n
$$
= \mathcal{H}^{2}(X)
$$
 (A measurable)
\n
$$
= \mathcal{H}^{2}(Y)
$$
 (equal area)

Therefore, $\mathcal{H}^2(f(A)) = \mathcal{H}^2(A)$ for each measurable set $A \subset X$. f is area-preserving

Theorem (Meier-N. 2023)

Let X, Y be metric surfaces without boundary and $f: X \rightarrow Y$ be area-preserving, 1-Lipschitz, and surjective. If Y is Riemannian, then f is an isometry.

What is special about metric surfaces?

Theorem (Uniformization Theorem, Koebe, Poincaré 1907)

Every simply connected Riemannian surface can be conformally uniformized by the complex **plane** or the unit **disk** or the Riemann sphere.

f conformal: balls \rightarrow balls (or squares \rightarrow squares) in infinitesimal scale

Geometric definition of quasiconformality

X metric surface Γ family of curves in X $\rho: X \rightarrow [0,\infty]$ is *admissible* for Γ if $\int_{\gamma} \rho \, ds \geq 1$ for all $\gamma \in \Gamma$ Mod Γ = inf *ρ* Z X $\rho^2\,d\mathscr{H}^2\longrightarrow 0$ uter measure on curve families

f conformal: Mod Γ = Mod $f(\Gamma)$ f quasiconformal: K^{-1} Mod $\Gamma \leq$ Mod $f(\Gamma) \leq K$ Mod Γ

Mod $\Gamma(Q) \cdot$ Mod $\Gamma^*(Q) = 1$

 $Mod Γ = 0$

Mod $\Gamma > 0$

(Quasi)conformal parametrization $f: \mathbb{C} \rightarrow X$ \implies The family of (non-constant) curves passing through each point has modulus zero

Finite area $\widehat{2}$) Smooth except for one point P (3) The family of curves passing through P has positive modulus.

No quasiconformal parametrization

=⇒

Quasiconformal uniformization

Magic Ball Designed by: Yuri Shumakov Presented by: Jo Nakashima

 (1) Length-isometric to cylinder outside poles $\left(2\right)$ The family of curves through poles has positive modulus 3 Not quasiconformal to sphere

Question

Is this the only enemy?

Question

Is this the only enemy?

Let $C \subset \mathbb{R}^2$ Cantor set. Set $\omega = \chi_{\mathbb{R}^2 \setminus C}$.

$$
d_{\omega}(z,w) = \inf_{\gamma} \int_{\gamma} \omega \, ds
$$

 $\left(\mathbb{R}^2,d_{\omega}\right)$ is homeomorphic to \mathbb{R}^2

If $|C| > 0$ then (\mathbb{R}^2, d_ω) is not quasiconformal to \mathbb{R}^2 (Rajala)

Near density points

$$
Mod \Gamma(Q) Mod \Gamma^*(Q) \to \infty
$$

Theorem (Rajala 2017)

Let X be a metric 2-sphere. There exists a quasiconformal map $f: \widehat{\mathbb{C}} \to X$ if and only if X is reciprocal.

Reciprocity conditions:

(1) The family of non-constant curves passing through each point x has modulus zero.

$$
\lim_{r\to 0} \mathsf{Mod}\,\Gamma\big(B(x,r), X\setminus B(x,R)\big)=0
$$

 (2) For each topological quadrilateral Q:

$$
\kappa^{-1} \leq \mathsf{Mod}\,\Gamma(Q) \cdot \mathsf{Mod}\,\Gamma^*(Q) \leq \kappa
$$

Quasiconformal uniformization

- \bullet If X is reciprocal, there exists f with *π*₄ Mod Γ ≤ Mod *f* (Γ) ≤ *π*₂ Mod Γ (Rajala, Romney) Optimal constants attained by $id : \mathbb{R}^2 \to X = (\mathbb{R}^2, \ell^{\infty})$
- \bullet X Ahlfors 2-regular and LLC \Rightarrow Quasiconformal maps are quasisymmetric
	- \implies Bonk-Kleiner Theorem
- **•** For every surface *κ*⁻¹ ≤ Mod Γ(*Q*) · Mod Γ*(*Q*) (Rajala–Romney) $\kappa^{-1} = (\pi/4)^2$ (Eriksson-Bique–Poggi-Corradini)
- \bullet X is reciprocal if and only if Mod $\Gamma(Q) \cdot$ Mod $\Gamma^*(Q) \leq \kappa$ (N – Romney)
- **•** If the modulus of curves passing through each point is zero, then X is not necessarily reciprocal. $(N -$ Romney)

Theorem (N.-Romney 2022)

Every metric surface admits a weakly quasiconformal parametrization by a Riemannian surface.

Corollary

Every metric 2-sphere admits a weakly quasiconformal parametrization by the Riemann sphere.

 X, Y metric surfaces without boundary $f: X \rightarrow Y$ weakly quasiconformal:

- Uniform limit of homeomorphisms
- Mod $\Gamma \leq K \text{Mod} f(\Gamma)$

 $f: \widehat{\mathbb{C}} \to X$ is QC if and only if X is reciprocal

Earlier versions for locally geodesic and length surfaces (Meier-Wenger 2021, N.-Romney 2021)

Example

- (1) f is weakly quasiconformal
- (2) f is not injective in black balls around poles
- $\left(3\right) f$ is ${\sf conformal}$ outside black balls

Problem

If the modulus of curves passing through a point $p \in X$ is positive, does there exist a WQC parametrization from a smooth surface that maps a disk to the point p?

- Riemannian surfaces −→ conformal parametrization (also polyhedral surfaces, Aleksandrov surfaces)
- Reciprocal surfaces −→ quasiconformal parametrization Largest class of surfaces so that modulus in local coordinates is the same as modulus on surface
- Metric surfaces −→ weakly quasiconformal parametrization

Area-preserving and Lipschitz maps between surfaces

Theorem (Meier-N.)

Let $f: X \rightarrow Y$ be area-preserving 1-Lipschitz, and surjective. If Y is Riemannian then f is an isometry.

First step: Preservation of length

Question

If f is area-preserving and Lipschitz, does it quasi-preserve the length of Mod-a.e. path?

 $K^{-1}\ell(\gamma) \leq \ell(f \circ \gamma) \leq K\ell(\gamma)$

Yes if X is reciprocal (Meier-N.). Yes if X 2-rectifiable (Creutz-Soultanis).

f need not be injective: $I = [0,1] \times \{0\}, \quad Y = \mathbb{R}^2 / I, \quad f : \mathbb{R}^2 \to \mathbb{R}^2 / I$ projection Then f is area-preserving and 1-Lipschitz but not injective.

Theorem (Meier-N.)

Let $f: X \rightarrow Y$ be area-preserving, Lipschitz, and surjective. If Y is reciprocal, then f is a K-quasiconformal homeomorphism and

 $K^{-1}\ell(\gamma) \leq \ell(f \circ \gamma) \leq K\ell(\gamma)$

for Mod-a.e. curve γ . If f is 1-Lipschitz, then $K = 1$.

 f does not preserve the length of every curve: Let $\omega(x,0) = x$, $0 \le x \le 1$, and $\omega(x,y) = 1$ otherwise. Define

$$
d(z, w) = \inf_{\gamma} \int_{\gamma} \omega \, ds
$$

The identity id: $\mathbb{R}^2 \to (\mathbb{R}^2, d)$ is 1-Lipschitz, 1-quasiconformal but

$$
\ell_d([0,t])=t^2/2
$$

Area-preserving and Lipschitz maps between surfaces

Y is upper Ahlfors 2-regular if $\mathcal{H}^2(B(x,r)) \leq Cr^2 \Rightarrow$ Reciprocal

Theorem (Meier-N.)

Let $f: X \rightarrow Y$ be area-preserving, Lipschitz, and surjective. If Y is upper Ahlfors 2-regular, then f is a homeomorphism and

 $K^{-1}\ell(\gamma) \leq \ell(f \circ \gamma) \leq K\ell(\gamma)$

for every curve *γ*.

In general we do not have $K = 1$: Let $\omega(x,0) = 1/2$, $0 \le x \le 1$, and $\omega(x,y) = 1$ otherwise. Define

$$
d(z, w) = \inf_{\gamma} \int_{\gamma} \omega \, ds
$$

 (\mathbb{R}^2, d) is bi-Lipschitz to \mathbb{R}^2 but $\ell_d([0,1]) = 1/2 \neq \ell([0,1])$.

Area-preserving and Lipschitz maps between surfaces

Theorem (Meier-N.)

Let $f: X \rightarrow Y$ be area-preserving, 1-Lipschitz, and surjective. If Y is Riemannian then f is an isometric homeomorphism.

Proof sketch:

- \bullet f is a 1-QC homeomorphism, preserves length of a.e. curve.
- Let γ be a curve in *Y*. Claim: $\ell(f^{-1} \circ \gamma) \leq \ell(\gamma)$.
- **•** γ_t = curve at distance *t* from γ
- Coarea inequality in Riemannian manifolds: \int^r $\ell(\gamma_t) dt \leq \mathcal{H}^2(N_r(|\gamma|)).$
- Area bound in Riemannian manifolds: $\mathcal{H}^2(N_r(|\gamma|)) \leq 2r\ell(\gamma) + O(r^2)$ as $r \to 0$.

We have

$$
r\cdot \underset{t\in(0,r)}{\text{essinf}}\,\ell(\gamma_t)\leq \int_0^r \ell(\gamma_t)\,dt\leq 2\,r\ell(\gamma)+O(r^2).
$$

There exists a sequence $t_n \rightarrow 0$ such that

$$
\begin{aligned}\n\bullet \ \ell(\gamma_{t_n}) &\le 2\ell(\gamma) + o(1) \\
\bullet \ \ell(\gamma_{t_n}) &= \ell(f^{-1} \circ \gamma_{t_n})\n\end{aligned}
$$

By lower semi-continuity of length

$$
2\ell(f^{-1}\circ\gamma)\leq \liminf_{n\to\infty}\ell(f^{-1}\circ\gamma_{t_n})\leq 2\ell(\gamma).
$$

Coarea inequality

Theorem (Federer)

Let $X \subset \mathbb{R}^2$ and $u: X \to \mathbb{R}$ be a continuous function in $W^{1,1}_{loc}(X)$. Then

$$
\int\int_{u^{-1}(t)} g\,d\mathcal{H}^1 dt = \int_X g \cdot |\nabla u| \, d\mathcal{H}^2
$$

for all Borel functions $g: X \to [0,\infty]$.

Theorem (Eilenberg)

Let X be a metric space and $u: X \to \mathbb{R}$ be a Lipschitz function. Then

$$
\int^* \int_{u^{-1}(t)} g \, d\mathcal{H}^1 dt \le \frac{4}{\pi} \int_X g \cdot \text{Lip}(u) \, d\mathcal{H}^2
$$

for all Borel functions $g: X \rightarrow [0,\infty]$.

$$
\text{Lip}(u)(x) = \limsup_{y \to x} \frac{|u(x) - u(y)|}{d(x,y)}.
$$

Dimitrios Ntalampekos | [Lipschitz-volume rigidity for metric surfaces](#page-0-0)

How does the coarea inequality generalize to Sobolev functions in metric spaces?

ρ is an upper gradient of u if

$$
|u(x)-u(y)| \leq \int_{\gamma} \rho \, ds
$$

for all curves *γ* and points x,y on *γ*.

 ρ is a (2-)weak upper gradient of u if this is true for Mod-a.e. curve *γ*.

 ρ plays the role of $|\nabla u|$

We would like to have a coarea inequality with a weak upper gradient of u in place of $|\nabla u|$, Lip(u)

Coarea inequality

Can we have \int^* $\int_{u^{-1}(t)} g d\mathcal{H}^1 dt \leq \frac{4}{\pi}$ *π* Z $\int_X g \cdot \rho \, d\mathcal{H}^2?$ No! (Esmayli-Ikonen-Rajala)

- $C \subset \mathbb{R}^2$ Cantor set of positive area
- X metric surface in \mathbb{R}^3 containing C such that a.e. curve in X does not "see" C
- $u(x,y,z) = x$ Lipschitz function, weak upper gradient $\rho|_C = 0$

• For
$$
g = \chi_C
$$
, $\int_C g \cdot \rho \, d\mathcal{H}^2 = 0$

Fubini: $\int \int_{u^{-1}(t)} \chi_C d\mathcal{H}^1 dt = \text{Area}(C) > 0$

Theorem (Esmayli-Ikonen-Rajala)

Let X be a metric surface and $u: X \to \mathbb{R}$ be continuous and **monotone** function with a 2-weak upper gradient $\rho \in L^2_{loc}(X)$. Then

$$
\int^* \int_{u^{-1}(t)} g \, d\mathcal{H}^1 dt \le \frac{4}{\pi} \int_X g \cdot \rho \, d\mathcal{H}^2
$$

for all Borel functions $g: X \rightarrow [0,\infty]$.

Theorem (Meier-N.)

Let X be a metric surface and $u: X \to \mathbb{R}$ be continuous function with a 2-weak upper gradient $\rho \in L^2_{\text{loc}}(X)$. Then

$$
\int^* \int_{u^{-1}(t) \cap \mathscr{A}_u} g \, d\mathscr{H}^1 dt \leq \frac{4}{\pi} \int_X g \cdot \rho \, d\mathscr{H}^2
$$

for all Borel functions $g: X \to [0,\infty]$.

 \mathcal{A}_{μ} = non-degenerate components of level sets of μ

Thank you!

Dimitrios Ntalampekos | [Lipschitz-volume rigidity for metric surfaces](#page-0-0)