# Inverse absolute continuity of quasiconformal maps

#### Dimitrios Ntalampekos<sup>1</sup> Matthew Romney<sup>2</sup>

<sup>1</sup>Stony Brook University

<sup>2</sup>University of Jyväskylä

### AMS Spring Eastern Sectional Meeting: Special Session on Analysis, Geometry, and PDEs in Non-smooth Metric Spaces April 14, 2019

# Quasiconformal and Quasisymmetric maps

 $U, V \subset \mathbb{R}^n$  open  $f: U \to V$  orientation-preserving homeomorphism f is **quasiconformal** if for each  $x \in U$  there exists  $r_x > 0$  such that for  $r \leq r_x$ :



f is quasisymmetric if the above holds for all balls.

# Motivation

### Question

What is the boundary behavior of quasiconformal maps on the disk/half-space?

```
\begin{split} \mathbb{H} &= \text{Upper half plane} \\ \partial \mathbb{H} &= \mathbb{R} \\ \text{Suppose that } f : \mathbb{H} \to \mathbb{H} \text{ is quasiconformal.} \\ f \text{ induces a quasisymmetry } f : \mathbb{R} \to \mathbb{R}. \end{split}
```

### Question

Are  $f, f^{-1}: \mathbb{R} \to \mathbb{R}$  absolutely continuous in measure? That is,  $|E| = 0 \iff |f(E)| = 0$ .

#### Answer: NO!

### Theorem (Ahlfors-Beurling)

There exists a quasiconformal map  $f : \mathbb{H} \to \mathbb{H}$  such that the boundary map  $f : \mathbb{R} \to \mathbb{R}$  is singular: there exists a set  $E \subset \mathbb{R}$  with |E| = 0 such that f(E) has full measure.

#### Theorem (Tukia)

For each  $\alpha > 0$  there exists a quasisymmetric map  $f : \mathbb{R} \to \mathbb{R}$  and  $E \subset \mathbb{R}$ with dim<sub>H</sub>(E) <  $\alpha$  such that dim<sub>H</sub>( $\mathbb{R} \setminus f(E)$ ) <  $\alpha$ .

# Dimensions $n \ge 2$

Let  $f : \mathbb{R}^{n+1}_+ \to \mathbb{R}^{n+1}_+$  be quasiconformal.

f induces a quasisymmetry  $f : \mathbb{R}^n \to \mathbb{R}^n$ .

Quasisymmetries of  $\mathbb{R}^n$  are quasiconformal  $(n \ge 2)$ .

Quasiconformal maps  $f, f^{-1} \colon \mathbb{R}^n \to \mathbb{R}^n$  are absolutely continuous in measure!

$$|E|_n = 0 \iff |f(E)|_n = 0$$

# Main question

# Question (Gehring)

Let  $f : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$  be quasiconformal and let V be an n-dimensional hyperplane (or smooth hypersurface). Are f|V,  $f^{-1}|f(V)$  absolutely continuous in n-measure?

**Answer:** If f(V) has locally finite *n*-measure then  $E \subset V$ ,  $|E|_n = 0 \Rightarrow |f(E)|_n = 0$  (Gehring). So *f* is absolutely continuous in measure.

# Partial results

## Theorem (Heinonen)

Let  $f : \mathbb{R}^{n+1}_+ \to \mathbb{R}^{n+1}$  be a quasiconformal embedding, extending to  $\mathbb{R}^n = \partial \mathbb{R}^{n+1}_+$ . If  $f(\mathbb{R}^n)$  has a tangent n-plane at a.e. point, then f is absolutely continuous in measure:  $E \subset \mathbb{R}^n$ ,  $|E|_n = 0 \Rightarrow |f(E)|_n = 0$ .

#### Theorem (Väisälä)

Let  $f : \mathbb{R}^n \to \mathbb{R}^N$ ,  $N \ge n$ , be a quasisymmetric embedding such that  $f(\mathbb{R}^n)$  has locally finite n-measure. Then  $|E|_n = 0 \Rightarrow |f(E)|_n = 0$ .

#### Theorem (David-Semmes, Semmes)

Let  $f : \mathbb{R}^n \to X$  be a quasisymmetric homeomorphism and X is Ahlfors n-regular ( $|B(x,r)|_n \simeq r^n$ ) then  $f, f^{-1}$  are absolutely continuous in measure:  $|E|_n = 0 \iff |f(E)|_n = 0$ .

# Problems

### Question (Gehring, Heinonen, Astala-Bonk-Heinonen)

Let  $f: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$  be quasiconformal and let V be an n-dimensional hyperplane (or smooth hypersurface). Is  $f^{-1}|f(V)$  absolutely continuous in measure? Can we have  $|E|_n > 0$  but  $|f(E)|_n = 0$ ?

### Question (Vaïsälä)

If  $f : \mathbb{R}^n \to \mathbb{R}^N$ ,  $N \ge n$ , is quasisymmetric embedding, is  $f^{-1}|f(\mathbb{R}^n)$  absolutely continuous in measure?

### Question (Heinonen-Semmes)

If  $f : \mathbb{R}^n \to X$  is quasisymmetric homeomorphism, is  $f^{-1}$  absolutely continuous in measure? What if we add the assumption that X has locally finite n-measure?

# Negative results

# Theorem (Romney)

There exists a quasisymmetry  $f : \mathbb{R}^n \to X$  and a set  $E \subset \mathbb{R}^n$  of full *n*-measure with  $|f(E)|_n = 0$ .

## Theorem (Romney)

There exists a quasisymmetry  $f : \mathbb{R}^n \to X$ , where X has locally finite *n*-measure, and a set  $E \subset \mathbb{R}^n$  of positive *n*-measure with  $|f(E)|_n = 0$ .

# Back to original problem

### Question (Gehring, Heinonen, Astala-Bonk-Heinonen)

Let  $f: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$  be quasiconformal and let V be an n-dimensional hyperplane (or smooth hypersurface). Is  $f^{-1}|f(V)$  absolutely continuous in measure? Can we have  $|E|_n > 0$  but  $|f(E)|_n = 0$ ?

#### Theorem (N.-Romney)

There exists a quasiconformal map  $f : \mathbb{R}^3 \to \mathbb{R}^3$  and a set  $E \subset \mathbb{R}^2 \times \{0\}$  of full 2-measure such that  $|f(E)|_2 = 0$ .

#### Theorem (N.-Romney)

There exists a quasiconformal map  $f : \mathbb{R}^3 \to \mathbb{R}^3$  such that  $f(\mathbb{R}^2 \times \{0\})$  has locally finite 2-measure and there exists a set  $E \subset \mathbb{R}^2 \times \{0\}$  with  $|E|_2 > 0$  but  $|f(E)|_2 = 0$ .

# Main ingredient of proof

 $egin{aligned} g \colon \mathbb{D} &
ightarrow \mathbb{D} \ B(0,a) &\mapsto B(0,ab) \ ( ext{conformal}) \ A(0;a,1) &\mapsto A(0;ab,1) \ ( ext{quasiconformal}) \end{aligned}$ 



Then g is K-quasiconformal in  $\mathbb{D}$  with  $K \ge C(a, b) > 1$ .









# **Open Questions**

#### Question

Can such a construction be performed in  $\mathbb{R}^n$ ,  $n \geq 3$ ?

### Question

Can f be K-quasiconformal with  $K \rightarrow 1$ ? Could it be the case that  $(1 + \varepsilon)$ -quasiconformal maps, restricted to a hyperplane, have absolutely continuous inverse?

# Thank you!