(Non)-removability of the Sierpiński gasket

Dimitrios Ntalampekos

University of California, Los Angeles

General problem

 $\Omega \subset \mathbb{R}^n$ open set

$$f: \overline{\Omega} \to \mathbb{R} \quad (\text{or } \mathbb{R}^n)$$
$$g: \mathbb{R}^n \setminus \Omega \to \mathbb{R} \quad (\text{or } \mathbb{R}^n)$$

with f = g on $\partial \Omega$. Define

$$h = egin{cases} f, & \overline{\Omega} \\ g, & \mathbb{R}^n \setminus \Omega \end{cases}$$

Question: Is h of the same class as f and g?

(Quasi)conformal removability

Definition

Let $K \subset \mathbb{C}$ be a compact set. K is **removable** for (quasi)conformal maps (**QC-removable**) if every homeomorphism $f: \mathbb{C} \to \mathbb{C}$ that is (quasi)conformal in $\mathbb{C} \setminus K$ is (quasi)conformal in \mathbb{C} .

Fact: K conformally removable \iff quasiconformally removable

Problem

Find geometric conditions that characterize removability.

Applications:

- Complex Dynamics (quasiconformal surgery) (Shishukura, Sullivan,...)
- Conformal Welding
- Connections to problems of density and extendability of Sobolev functions (Koskela, Rajala, Zhang,...)
- SLE and connection to GFF (Duplantier, Miller, Sheffield,...)

Examples of removable sets

- Sets of σ -finite length (e.g. smooth curves)
- Quasicircles
- Boundaries of John/Hölder domains (quasihyperbolic condition by Jones-Smirnov)

Figure: von Koch snowflake

Examples of non-removable sets

- Sets of positive area
- $C \times [0,1]$ and some product sets $C \times E$, where C,E are Cantor sets
- Bishop's flexible curves, with Hausdorff dimension 1
- Kaufman's graphs, can be lpha-Hölder continuous with lpha < 1/2 (Tecu)

Question: Is the graph of Brownian Motion non-removable?

What about sets of more complicated topology?

Figure: Sierpiński carpet

Figure: Sierpiński gasket

Fact: The carpet is non-removable: contains $C \times [0,1]$.

Question:

Is the gasket removable?

Sobolev removability

Definition

Let $p \in [1, \infty]$ and $K \subset \mathbb{C}$ be a compact set.K is $W^{1,p}$ -removable if any continuous function $f : \mathbb{C} \to \mathbb{R}$ with $f \in W^{1,p}(\mathbb{C} \setminus K)$ lies in $W^{1,p}(\mathbb{C})$.

Facts:

- The problem is local (open question for QC-removability).
- $W^{1,2}$ -removable \Longrightarrow QC-removable (converse?).
- The carpet is non-removable for $W^{1,p}$, $1 \le p \le \infty$.

$W^{1,p}$ -removability of the gasket

Theorem (N. 2017)

The gasket is $W^{1,p}$ -removable for p > 2.

Detour property: For each line L there exists a **detour path** γ arbitrarily close to L such that γ intersects only **finitely many** complementary triangles.

Other examples with the detour property

Figure: Apollonian gasket

Figure: Julia set of $z^2 - \frac{16}{27z}$

$$p = 2?$$

Theorem (N. 2018)

All homeomorhic copies of the gasket are non-removable for $W^{1,p}$, $1 \le p \le 2$.

Corollary

The gasket is $W^{1,p}$ -removable if and only if p > 2.

Question: Is there a topological proof of the non-removability?

Back to quasiconformal removability

Theorem (N. 2018)

The gasket is non-removable for quasiconformal maps.

In other words, there exists a homeomorphism $f:\mathbb{C}\to\mathbb{C}$ that is quasiconformal on $\mathbb{C}\setminus K$ but not quasiconformal on \mathbb{C} .

Question: What about homeomorphic copies?

Idea

Quasiconformal maps

 $U, V \subset \mathbb{C}$ open

 $f: U \to V$ orientation-preserving homeomorphism f is **quasiconformal** if for each $x \in U$ there exists $r_x > 0$ such that for $r \le r_x$:

f is **quasisymmetric** if r_x does not depend on x.

Step 1: Collapse triangles to tripods continuously

 $\begin{array}{ccc} \text{vertices} & \mapsto & \text{vertices} \\ \text{midpoints} & \mapsto & \text{barycenter} \end{array}$

Step 1: Collapse triangles to tripods continuously

Obtain a map $f: \mathbb{C} \to \mathbb{C}$:

- continuous and surjective
- injective outside triangles
- f(K) has full Lebesgue measure

Step 2: Create an abstract surface

Create an abstract surface S and "extend" $f: \mathbb{C} \to \mathbb{C}$ to a homeomorphism $\Phi: \mathbb{C} \to S$ that is quasiconformal outside K.

- $\Phi(K)$ has positive Hausdorff 2-measure in S
- S is 2-regular: $\mathcal{H}^2(B(x,r)) \simeq r^2$
- S is a **quasiplane**: there exists a quasisymmetry $\Psi \colon S o \mathbb{C}$

Step 3: The exceptional homeomorphism

$$\mathbb{C} \xrightarrow[\text{on } \mathbb{C} \setminus K]{\Phi} S \xrightarrow[\text{quasisymmetric everywhere}]{\Psi} \mathbb{C}$$

- homeomorphism, quasiconformal on $\mathbb{C} \setminus K$
- not quasiconformal on \mathbb{C} :

$$K\mapsto \Phi(K)$$
 (positive 2-measure) $\Phi(K)\mapsto \Psi\circ \Phi(K)$ (positive area)

Construction of the surface S: Folding a triangle over a tripod

- piecewise linear map
- "extension" of collapsing map f:

 $\begin{array}{ccc} \text{vertices} & \mapsto & \text{vertices} \\ \text{midpoints} & \mapsto & \text{barycenter} \end{array}$

 M-quasiconformal for a universal M, independent of height of rectangles and length of tripod edges

Construction of the surface S: The map Φ

Embedding S to the plane: The map Ψ

Theorem (Bonk-Kleiner 2002)

Let (X, d) be an **Ahlfors** 2-regular metric space homeomorphic to the sphere S^2 . Then (X, d) is quasisymmetric to S^2 if and only if (X, d) is **LLC**.

- Ahlfors 2-regular: $\mathcal{H}^2(B(x,r)) \simeq r^2$
- LLC(linearly locally connected): no cusps and no tall waves/wrinkles

Thank you!

