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2-Dimensional Case

Let M be a Riemann surface and

f : C→ M

a nonconstant holomorphic map.

What type of surface can M be?

By the uniformization theorem, the universal cover X of M is
D, C or Ĉ.

X

C M

p

f

f̃

Eden Prywes Quasiregular Ellipticity



2-Dimensional Case
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If X = D, then f is constant.

If X = Ĉ, then M = Ĉ.

If X = C, then M ' S1 × S1.

How can we generalize this to higher dimensions?
conformal → quasiconformal
holomorphic → quasiregular
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Quasiregular Maps

Let M be a closed, connected, orientable Riemannian manifold.

Defintion

A map f : Rn → M is K -quasiregular if f ∈W 1,n
loc (Rn), f is

nonconstant and
||Df ||n ≤ KJf

A homeomorphic K -quasiregular map is K -quasiconformal.

A 1-quasiregular map in dimension 2 is holomorphic.

Question

What manifolds admit quasiregular maps (quasiregularly elliptic)?
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Revisit C

A quasiregular map f : C→ M can always be decomposed

f = g ◦ φ

where φ : C→ C is quasiconformal and g : C→ M is holomorphic
(Stöılow’s theorem).
So in dimension 2 the question of quasiregular ellipticity reduces to
the holomorphic case.
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Fundamental Group

In dimension 2, the fundamental group was the main obstruction
for admitting holomorphic maps.

Theorem (Varopoulos)

If M is an n-dimensional Riemannian manifold that is quasiregularly
elliptic, then π1(M) has a growth order bounded above by n.

Proof relies on lifting f to a noncompact universal covering
space.

As in dimension 2, this result is independent of the distortion
K .

Gromov (’81) asked whether there exists a simply connected
manifold that is not quasiregularly elliptic.

Eden Prywes Quasiregular Ellipticity



K -Dependency

The situation is not identical for K = 1 and K > 1.

Theorem (Rickman ’80)

A K-quasiregular map f : Rn → Sn can omit at most
C (n,K )-points.

Theorem (Rickman ’85, Drasin and Pankka ’15)

For N ∈ N, there exists a quasiregular map f : Rn → Sn that omits
N points.

In higher dimensions, the distortion constant can lead to
different results.
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K -Dependency

We can look for obstructions in other invariants besides the
fundamental group.

Theorem (Bonk and Heinonen ’01)

If M is K-quasiregularly elliptic, then

dimH l(M) ≤ C (n, l ,K ),

where H l(M) is the degree l de Rham cohomology of M.

They conjecture that C (n, l ,K ) =
(n
l

)
, which is attained since T n

is quasiregularly elliptic.
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Dynamic Result

Theorem (Kangasniemi ’17)

If M admits a noninjective uniformly quasiregular map, then

dimH l(M) ≤
(
n

l

)
.

A result by Martin, Volker and Peltonen (’06) gives that M is
quasiregularly elliptic.

Proof uses pointwise orthogonality properties of rescaled
differential forms on M.
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Main Result

What about the case when M is not assumed to admit a uniformly
quasiregular map?

Theorem (P. ’18)

If M is K-quasiregularly elliptic, then

dimH l(M) ≤
(
n

l

)

This bound is optimal because T n is quasiregularly elliptic.
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Main Result

Corollary (P. ’18)

There exist simply connected manifolds that are not quasiregularly
elliptic.

For example, M = #m(S2 × S2) for m ≥ 4.

Theorem (Rickman ’06)

(S2 × S2)#(S2 × S2) is quasiregularly elliptic.
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Outline of the Proof

Using f , pull back Poincaré pairs on M.

We then rescale the forms in Rn to get a collection of
differential forms on B(0, 1)

Lastly, we show that the rescaled forms are pointwise
orthogonal, which says that the number of forms should be
bounded above by dim

∧l Rn =
(n
l

)
.

This uses a weak reverse Hölder inequality for Jacobians of
quasiregular maps into manifolds with nontrivial cohomology.
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Rescaling Procedure

In the proof of the Bonk and Heinonen result the authors use a
rescaling procedure on the map f : Rn → M.

This gives that f is uniformly Hölder continuous.

Instead of rescaling the map f , rescale the pullbacks of differential
forms.
Rescaling functions in the Rickman-Picard theorem context was
used in a paper by Eremenko and Lewis ’91.

They rescale A-harmonic functions of the form log |f | with a
similar normalization to get functions on B(0, 1).

The new functions satisfy strong pointwise estimates.

Eden Prywes Quasiregular Ellipticity



Orthogonality

If k = dimH l(M), then, on M, let (α1, β1), . . . , (αk , βk) be
Poincaré pairs. ∫

M
αa ∧ βb = δab

So, if ηa = f ∗αa and θb = f ∗βb, then in the rescaling

η̃a ∧ θ̃b = 0

a 6= b, for almost every x ∈ B(0, 1).
At each point there can only be

(n
l

)
nonzero differential forms.

Equidistribution properties of f lead to a contradiction.
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Reverse Hölder Inequality I

In the argument above actually need to use a reverse Hölder
inequality for Jf .

Theorem (Bojarski and Iwaniec ’83)

Let f : Rn → Rn be a K-quasiregular map. Then f ∈W 1,nq
loc (Rn)

for 1 < q ≤ Q(n,K ), where Q(n,K ) depends only on n and K. If
B ⊂ Rn is a ball, then(∫

1
2
B
Jqf

)1/q

≤ C (n, q,K )
1

|B|1/q′
∫
B
Jf (1)

where 1
q + 1

q′ = 1. Crucially, C (n, q,K ) is independent of f and B.

This theorem does not directly apply since f : Rn → M. If
H l(M) = 0 for 1 ≤ l ≤ n − 1, then the theorem does not
necessarily hold.
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Reverse Hölder Inequality II

In our case there is an l so that H l(M) 6= 0.

Proposition

Let M be a closed Riemannian manifold and let f : Rn → M be
K -quasiregular. If there exists an integer l with 1 ≤ l ≤ n − 1 such
that H l(M) 6= 0, then the Jacobian of f satisfies the weak reverse
Hölder inequality,

1

|12B|

∫
1
2
B
Jf ≤ C (n,M,K )

(
1

|B|

∫
B
J
n/(n+1)
f

)(n+1)/n

,

where B ⊂ Rn is an arbitrary ball.

Once the proposition is shown, then the reverse Hölder
inequality for an exponent b > 1 follows from Gehring’s
lemma.
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Further questions

What about the case when M is not compact?

For n = 2, M ' C or S1 × R.
For n > 2, the answer must depend on K by the
Rickman-Picard theorem.

Does there exist a quasiregularly elliptic manifold where the
quasiregular map does not factor through the torus?

If #3S2 × S2 is quasiregularly elliptic, then the map cannot
factor through the torus (Pankka and Souto ’12).

Suppose dimH l(M) =
(n
l

)
, what does this imply about M?

For l = 1, there must exist a covering map p : T n → M
(Luisto and Pankka ’16).
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Thank you!
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