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X = compact Hausdorff space
C(X ) = {f : X → C, continuous} endowed with ‖f ‖∞ = sup{|f (x)| : x ∈ X}
A uniform algebra A on X is a uniformly closed subalgebra of C(X ) that
contains the constants and separates the points on X .
The maximal ideal space of A is

MA = {φ : A→ C, φ 6= 0,multiplicative, linear}

topologized with the relative weak∗ topology.
MA= compact subset of S(0, 1) ⊂ A∗

X ↪→MA, by x 7→ φx , φx(f ) = f (x).
A ∼= Â ⊂ C(MA), by f 7→ f̂ , f̂ (φ) = φ(f ).
Notice, for x ∈ X , f̂ (φx) = φx(f ) = f (x),
so we may think X ⊂MA, A = Â and the functions of A extend from X to MA.
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Example

For X a compact, T2 space, C(X ) is a uniform algebra with MC(X ) = X .

The disc algebra

If D = {z ∈ C : |z | < 1} then

A(D) = {f ∈ C(D̄) : f ∈ H(D)}

is a uniform algebra with MA(D) = D̄.
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Example

Let K ⊂ Cn compact. Consider

P(K) = {f ∈ C(K) : f is a uniform limit of polynomials in z1, . . . , zn}

which is a uniform algebra with MP(K) = K̂ , the polynomial hull of K ,

K̂ = {z ∈ Cn : |p(z)| ≤ ‖p‖K , ∀p ∈ C[z1, . . . , zn]}.

For n = 1, K̂ = K∪ bounded components of C \ K .
Note that P(∂D) ∼= P(D̄) = A(D).
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Example

For K ⊂ Cn,

R(K) = {f ∈ C(K) : f is a uniform limit of rational functions with poles off K}

is a uniform algebra with MR(K) = hr (K), the rational hull of K ,

hr (K) = {z ∈ Cn : |f (z)| ≤ ‖f ‖K , ∀ rational function f with poles off K}

For every K ⊂ C, hr (K) = K .
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Definition
If A is a uniform algebra, an analytic disc in MA is an 1− 1 continuous map
σ : D →MA so that f ◦ σ : D → C is holomorphic, for all f ∈ A.

Conjecture

If MA 6= X there must be an analytic disc in MA.

Stolzenberg 1963

There exists X ⊂ C2 compact so that X̂ \ X 6= ∅, but X̂ contains no analytic
disc.

Wermer 1970
There exists X ⊂ C2 compact so that hr (X ) \ X 6= ∅ but hr (X ) contains no
analytic disc.
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If MA 6= X is there a weaker form of analyticity in MA?

Gleason, 1957
For φ, ψ ∈MA define

φ ∼ ψ iff ‖φ− ψ‖ = sup{|φ(f )− ψ(f )| : f ∈ A, ‖f ‖ ≤ 1} < 2.

Then ∼ is an equivalence relationship on MA and the equivalence classes of ∼
are called Gleason Parts.

Disc Algebra

If |s|, |t| < 1, f ∈ A(D) and ‖f ‖ ≤ 1 then by Schwarz’s Lemma

|f (s)− f (t)| ≤
∣∣∣∣ s − t

1− s̄t

∣∣∣∣ |1− ¯f (s)f (t)|

so s ∼ t.
If |s| = 1 and |t| ≤ 1 using automorphisms of D we may show s � t.
Gleason parts for A(D) : D, {z}, z ∈ ∂D.

Example

For X a compact T2 space, C(X ) has only trivial Gleason parts.
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Wermer, Hoffman
If A is a Dirichlet or logmodular algebra (e.x. A(D), P(X ) for X ⊂ C compact
with C \ X connected, H∞(D) ), then every Gleason part for A is either trivial
or an analytic disc.
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Conjecture

If the uniform algebra A on X has only trivial Gleason parts then A = C(X ).

Cole, 1968
There exists A on X such that A 6= C(X ) but it has only trivial Gleason parts.

Cole, Ghosh, Izzo, 2000
There is X ⊂ C3 compact such that X̂ \ X 6= ∅ but P(X ) has only trivial
Gleason parts.
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Gamelin, Rossi
There are not known examples of disconnected Gleason parts but there
existence seems very likely.

Question
What spaces can occur as Gleason parts for a uniform algebra?

If P is a Gleason part for A it is completely regular (since P ⊂MA ).
P is also σ-compact since if φ ∈ P,P =

⋃∞
n=1{ψ ∈MA : ‖φ− ψ‖ ≤ 2− 1/n}.

Garnett, 1967
If P is a completely regular, σ-compact space there is uniform algebra A such
that MA contains a homeomorphic image of P which is a Gleason part for A,
and such that A|P = Cb(P) (the space of continuous and bounded functions on
P).

So nontrivial Gleason parts carry no analytic structure in general.
However in Garnett’s construction MA contains many analytic discs.
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that MA contains a homeomorphic image of P which is a Gleason part for A,
and such that A|P = Cb(P) (the space of continuous and bounded functions on
P).

So nontrivial Gleason parts carry no analytic structure in general.
However in Garnett’s construction MA contains many analytic discs.
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Question
Which spaces occur as Gleason parts for a uniform algebra without analytic
discs?

Izzo, P.
If P is a completely regular, σ-compact space, there is a uniform algebra A on
a compact T2 space X without analytic discs, but having a part homeomorphic
to P lying in MA \ X . Furthermore, A|P = Cb(P).
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Question
Which spaces occur as a Gleason part for a uniform algebra without analytic
discs over a metrizable space?

Izzo, P.
Let P be a σ-compact, metrizable space. There exists a uniform algebra A
(necessarily separable) on a metrizable, compact space X , without analytic
discs, and such that MA \ X contains a homeomorphic image of P constituting
a Gleason part. Furthermore, A|P = C(X )|P .
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Question
Which spaces can occur as a Gleason part for a finitely generated uniform
algebra? Equivalently for a P(X ), X ⊂ Cn compact?

Izzo, P.
If P is a locally compact space of finite topological dimension, there exists an
X ⊂ Cn for some n ∈ N compact, such that X̂ contains no analytic discs, but
does contain a part homeomorphic to P lying in X̂ \ X .

Open question

Can Q occur as a Gleason part for a finitely generated uniform algebra?
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THANK YOU!
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