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Theorem: (DeMarco, Koch, McMullen [DKM17]) Let h: S — S be
an arbitrary map defined on a finite set S C C with |S| > 3. Then
there exists a sequence of rigid postcritically finite rational maps f,
such that |P(f,)| = |S|, P(f,) — S and f,|P(f,) — h|S as n — oo.
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Theorem: (Bishop, L." ) Let S C C be a discrete sequence (no
finite accumulation points) with 4 < |S| < oo, let h: S — S be
any map, and let € > 0. Then there exists a transcendental
meromorphic function f : C — C and a bijection ¢ : S — P(f)
with |1(s) —s| — 0 as s — oo, [¢(s) —s| < e foralls € S, and
flpgry = ohoy™
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Question: Given any discrete planar sequence S and some map
h:S — S, does there always exist a meromorphic f so that
P(f) =S, and f|s = h?



