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Generalized hypergeometric function: questions

Seta:(al,ag,...,ap) e Cr, b:(bl,bQ,...,bq) € C4. Then

_ he o) < (a1)n(a2)n - (ap)n
Z) a qu <a7b’Z) - ng(] (bl)n(bQ)n U (bq)nn!Z 7

where (a), =I'(a +n)/I'(a) denotes the rising factorial. The series
converges for all z€ Cif p<qgandfor |z| <1lifp=gq+ 1.

@ Analytic continuation of z — ,F,_1(z) to |z| > 1
@ Analytic continuation of (a,b) — ,F,_1(1) to

R[> ar — > b;] > 0 (,Fp—1(1) is important in physics)
o Geometric properties of z — ,F,,_1(z) (univalence, starlikeness,
convexity etc.) and ratios
Values of z — ,F),_1(2) on the banks of the branch cut [1, c0)
@ Bounds for z — ,F),_1(%) in the complex plane

@ Location of zeros of entire functions ,Fy, p < ¢ (reality of zeros,
zero-free regions, etc.)
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Important ingredient: Meijer's G-function

Definition of Meijer's G-function (Meijer, around 1940)

Suppose 0 < m < ¢, 0 < n < p are integers, a = (ay,ag, ...,ap) € CP,
b = (b1,b2,...,by) € C? are such that a; —b; ¢ Nfori=1,...,n,
j=1,...,m. Define

m,n ay,
Gy (z b)'_
1 I'(bi+s) - -T'(bp+s)I'(1 —ar—s)---T'(1 —ap—s) ~5ds
21 ) T(ant1+s) - T(ap+s)I(1 — bpy1—5) - - -T'(1 — bg—s) )
L
G(s)

The contour £ begins and ends at infinity and separates the poles
—bj —k, k=0,1,... from the poles 1 —a; +1,1=0,1,...
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Important ingredient: Meijer's G-function

Mostly, we need only a particular case (Meijer-Ngrlund function):

2z %ds.

p,0
Gq,p <Z

The contour L is a vertical line on the right of all the poles of the
integrand or the left loop beginning and ending at —oo and leaving all
the poles on the left.

by 1 /I‘((J,H—s) —-T'(ap+s)
a)  2mi ) T(bi+s): - L(by+s)

Notation:

I'(a) ='(a1)l(az) - T(ap), (a)n = (a1)n(az)n - (ap)n,
a+p=(ar+p, a2+ p,...,ap + p);

in particular, (a) = (a); = a1 - - - ap; inequalities like (a) > 0 and
properties like —a ¢ Ny will be understood element-wise. The symbol
ayy) stands for the vector a with omitted k-th element.
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Key tool: integral representations

Termwise integration leads to the Laplace transform representations

the generalized Stieltjes transform representation

(318 (s

b dt
a ) t(1+ zt)°
and the cosine Fourier transform representation

e )= 28 [ (4

These hold if R(a) > 0 and also Z R(b; — a;) > 0 in the second and
third formulas or "2, R(b;) — >-—, R(a;) > 1/2 in the last formula.
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Extended integral representations with atom

First appearance: 1994 book by Virginia Kiryakova (derived by
consecutive fractional integrations). We relaxed the restrictions on
parameters and further extended these formulas to zero parametric

excess » -, (b; — a;) = 0 as follows

o,a

p+1Fp ( bl 7> _I'(b)

- ['(a).
2

S

{on (i) +of et
T'(b)

a - 2 <L \b)
F<b’ Z/4> V(@)
1 (2t)  GRO (12 b 4o L
o COS( 2z .p a,1/2 1 t7

where J; denotes the unit mass at the point t = 1 and
S b — P a; = 1/2 in the last formula.
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Positivity of G-function

Proposition (K.-Prilepkina, 2012)

Suppose a,b € RP and v, b(t) = Zé’:l(t"’i —1%) > 0. Then
b
0
R

Gp“’0<t E >>0

p,p+1 o,a) —

on (0,1) and

on (0,00) for any o > 0. In fact, more is true: if also a,b > 0 then

b gt is infinitely divisible probability
a distribution on [0, co).
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Sufficient condition: weak majorization

Observation (Alzer (1997) based on Tomi¢ (1949)): v, () >0
on [0, 1] if

0<a<az<---<ap 0<b <b<---<by,

k k
and ZaiSZbi for k=1,2...,p.
i=1 i=1

These inequalities are known as weak supermajorization and are
abbreviated as b<"a, where a= (a1, ..., ap), b=(b1,...,bp).

Dmitrii Karp (joint work with Elena Prilepkina, José Luis Lépez  Generalized hypergeometric function



Markov representation

Definition: Markov functions

Define T to be the class of functions f representable by

1
f(2) = /0 dpu(t)

1— 2zt

for some probability measure i on [0,1]. Functions f € T are
generating functions of the Hausdorff moment sequences.

Theorem (K.-Prilepkina, 2012)

Suppose 0 < o <1, a> 0 and vap(t) >0 on [0,1] (in particular, it
suffices that b<"a). Then ,1F,(0,a;b;z) € T and the representing

measure is given by
1,b dt
o,a/) t

du(t) = _I®) gpiro (t
if Z(bk = ak) >0 or d,ul(t) = du(t) + 07 if Z(bk = ak) = 0.

F(U)F(a) p+1l,p+1
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Corollary 1 (K.-Prilepkina, 2012)
Suppose 0 < o < 1 and vap(t) > 0 on [0,1]. Then the functions

2z = pr1Fp(o,a;b52) and 2z = zpp1F,(0, a;b; 2)

are univalent in the half-plane (z) < 1. The second function is
starlike is the disk |z| < r*, where r* = 1/13v/13 — 46 ~ 0,934.

Corollary 2 (K.-Prilepkina, 2012)

Suppose 0 < 0 <2 and vap(t) > 0 on [0,1]. Then the function
2z — zpy1F,(0,a;b; 2) is univalent in the disk

|z| <rs:=vVv32—-5=0.81.

Corollary 3 (K.-Prilepkina, 2012)

Suppose 0 > 1 and v, (t) > 0 on [0, 1]. Then the function
p+1Fp(0,a; b; —z) maps the sector 0 < arg(z) < m/c into the lower
half-plane (z) < 0.
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Inequalities in the left half-plane

Theorem (K.-Prilepkina, 2017)

Suppose a,b > 0 are such that 0 < a1 <1 and va b(t) > 0 on [0,1]
(where aj;) = (ag,...,ap+1)). Then the following inequalities hold in
the half plane R(z) < 1:

m < |pt1Fp(a+1;b+1;2)| <

2a)) — 2|l e 2@lz—2)

)z — 2]+ [z = refrl@i i) =1 < e e e

4()z — 2| - |2) 4(1z — 2| + |2)
|

((Iz =2 = [2)*’

2(b)(|z = 2| — |2])
(a)lz][z = 2[(]z = 2| +[2])

rr1fpla+1;b+1;2) -1
p+1Fp(a§ b; z)
2(b) (|7 = 2[ + |2])
~ (@)lzllz —2[(Jz — 2| — |z])’

IN
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Jump and average value on the branch cut

Theorem (K.-Prilepkina, 2017)

Suppose x > 1 and a, b are real vectors. Then the following identities

hold true
a . a .
pHFp(b T+ 10> = pHFp(b B = 10>
I'(b) pi10 111,b
= 2migg) Grtien (5| a
and

p+1Fp (a;b; 2 +i0) + p41 Fp (a;b;  — i0)
2

ml'(b) 11 (1
VzTl'(a) p+2,p+2 | 4

1/2,1,b—1/2
a—1/2,1
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Ratios of the Gauss functions

Gauss continued fraction + Markov and Stieltjes integral

representations:

2F1((11, a + 1; b1 + 1; Z)
oI (ay, ag; by; 2)

for 0 < a; <b1, 0 <ag < by. Explicit expression for the measure

(under additional restriction b; > 1) - Belevitch (1984):

eT

fi(z) =

f1(2) = A(ay,a2,b1) + B(ay, az, by)

L ta1+a2 1 t)blffllfagdt
/ 1 — zt) ]2F1 (a1,a2;b151/1)[*
0

where
[(by)(by + 1)

B b) 7b -
(a1, a2, b1) T(a)D(az + DD (b1 — a2)T(by — a1 + 1)
A(al,ag,bl):Oifaggal; A:M if as > ay.
az(by — aq)
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Ratios of the Gauss functions

Kiistner (2002): if —1 < a2 < by and 0 < a1 < by then
folz) = 2 F'1 (a1, as +‘1;f71;2)
2 F'1 (a1, az; by 2)
_oFi(a1 +1,a2 + 1501 + 15 2)
2 F1 (a1, az;b1; 2)

€T and

f3(z) eT

K.-Dyachenko (work in progress). Under certain conditions on
parameters:

B 1 ta1+a2—1(1 - t)bl—al—ag—ldt
fal2) = 31/0 (1= 2t)|2F1 (a1, az; by; 1/) 2
B 1 ta1+a2(1 _ t)bl—cu—az—ldt
fsl2) = 32/0 (1 — zt)|2Fi (a1, az; by; 1/8)]2
where B; = [['(b))]?/T'(a1)T(ag + D)T(by — a1)T(b1 — as),
By =b; [P(bl)]2/1“(a1 + 1)F((L2 + 1)F(b1 — al)F(bl — ag).
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Ratios of the GHF

K.-Dyachenko (work in progress). Suppose a > 0, a,b > 0 and

vab(t) >0 fort € (0,1), then
1,a
Z) /p+1Fp< b Z> S T

The density u(t) of representing measure is given by:

(

l,a4+«a

P =y (500

)F(a+a) D, b
F(b)I( )\pHF » (La;b; 1/t) Ptu(t) = GB) (t a> x

Gp+11 1,3/27b+01 _taGp+11 " 173/27b
p+2,p+2 1,a+ «,3/2 p+2,p+2 1,a,3/2 )
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Nevanlinna classes

Nevanlinna class N,

A function ¢(z) belongs to N, whenever it is meromorphic in Sz > 0,
and for any set of non-real points zy, ..., z; the Hermitian form

k
p(zn) — o(zm) . —
Ho(Cry-- -5 Ckl21,- -5 2) = Z #Qﬁm
n,m=0
has at most « negative squares and for some set of points exactly s
negative squares.

The class Ny coincides with Nevanlinna-Pick class of holomorphic
functions mapping the upper half-plane into itself.

Conjecture (partially proved for ratios of 2 F(z))

For all real parameters the ratios fi1(2), f2(2), f3(2) and F(z) belong
to NV, with x explicitly expressed in terms of parameters.
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Analytic continuation in parameters

Shorthand notation: ,41F, (a;b) := ,11Fp (a;b; 1)

2F1(1) - Gauss (1812) formula (the series on the left converges for
§R(bl — a1 — CLQ) > 0):

P <a1,a2> _ PO)I (b1 — a1 — ap)
2 bl F(bl — al)F(bl — (12)

Note that hyper-planes by — a; — a2 € —Nj are poles.

3F5(1) - Kummer (1836) and Thomae (1879) relations
(¢=bl+bg—a1—a2—a3):

ai,az,as L'(b2)I'(¢) ai, by —az,by —as
3l , = - 3bh ; , :
b1, b2 (b — a))T(¥ + a1) bi, v + ay

3F2 ((1,1, as, (13) _ r(bl)r(bg)r(l') )3F2 (bl —ai, bg —ai, ’l/)) .

F(a)T'(Y + a2)T'(¢ + a3 Y+ az, P+ as
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Analytic continuation in parameters

General case 1 F), - Olsson (1966), Biihring (1992), K.-Prilepkina
(2018): for (1) > 0 and R(ap; g) > O:

ay _ L(b)l'(¢) ~ (V)ngn(agg;b)
prfy <b> ~ D(ap )¢+ a)L(y + ag) nz% (Y +a1)n(¥ +az)n’

where g, (a; 3) are Ngrlund's coefficients defined either by recurrence
relations or by p — 2-fold summation (finally p — 1-fold summation).

Theorem (K.-Prilepkina, 2018) - triple summation

ecall that ¢ = _, bk —> 1 a;. For >0 an arp91) > 0:
Recall that 1 = Y°7_ b, — 2%} ;. For R(1) d R(ap g

I'(ap z) a\ 1 =Dk —by)
I'(b) prfh <b> _Sin(mﬁ); T(b,—a)

i(l—bk+a1)n(1—bk+a2)n 5 <—n,1—bk—|—a[172}>

(1 —bg + a1+ az +n)n! prpl 1—bk+b[k]
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Zeros of entire generalized hypergeometric functions

Theorem (K.-Lépez, 2016)

Suppose 0 < a <1, f1 > a+1, f2 >3/2,a>0and vap(t) >0 on
[0,1]. Then
0< plep(aaa; ﬁl?BZab; ‘T) <1

for all x < 0. In particular, this function has no real zeros.

A

Theorem (K.-Lépez, 2016)

Let a, b be positive vectors. Suppose that a; < min{1,bs — 1} for
some indexes k,s € {1,...,p} and Vagy,bly (t) > 0on [0,1]. Then
pFp(a; b; 2) has no real zeros and all its zeros lie in the open right half
plane R(z) > 0. Here aj) = (a1, ..., k-1, k11, - -, ap).

Dmitrii Karp (joint work with Elena Prilepkina, José Luis Lépez  Generalized hypergeometric function



Laguerre-Pdlya class

Laguerre-Pdlya class £L—7P: real entire functions with factorization
2 = x z
— o —art+fr e ~
f(z) =ca"e H(l—i—xk)e Ry
k=1
where ¢, 8,z €R, ¢ #0, a > 0, n € Ny and Zzozl l/xz < 0.
Theorem C (Richards, 1989; Ki and Kim, 2000)

Suppose p < ¢, a,b > 0 and a can be re-indexed so that ag = by + ni
forny € Ngand kK =1,...,p. Then

z) =¥ H (1 + ;) e % € L-P,

k=1

a

TORF A

where z;, > 0, w < 0o and the series > _°° | 1/22 converges.
Furthermore, if p = ¢, a € R contains no non-positive integers and
b > 0 then ai = by + ny for ny € Ny is necessary and sufficient for
oe L-P.
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Extended Laguerre inequalities

Theorem D (Patrick, 1973; Csordas and Varga, 1990)

Let f(z) = e_bz2f1(2’), (b>0,f(2) £0),

where fi(z) is a real entire function of genus 0 or 1. Set

2n o 1\k+n n
Lalflie) = Y- S () 10 @) 9w)
k=0

forz € Rand n > 0. Then f(z) € L—7P if and only if

L,[f](z) > 0 for all z € R and n > 0.

Corollary: extended Laguerre inequalities

Under hypotheses of Theorem C L,,[,F,(a; b;x)] > 0 for all integer
n >0 and all z € R.
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Laguerre inequalities

Theorem (Kalmykov-K., 2017): Laguerre inequality

If p < ¢ and conditions a <" b’ are satisfied, where b’ stands b with
g — p largest elements removed. Then the function z — ,F,(z)
satisfies the Laguerre inequality

a
AR

v
Conjecture: zeros of ,F,

Suppose p < ¢, b > 0 and ay > bg for k =1,...,p. Then all zeros of
pFy(a; b; 2) are real and negative.

Craven and Csordas (2006) conjectured that the following function has
only real and negative zeros for each positive integer m
I 1 2 m—1 1 2 m
_ — .. ; o ;2
m—14'm m7m7 ) m 7m+17m+17 7m+17
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