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Dirichlet type spaces

SETUP

I D = {z : |z | < 1} open unit disk in C.
I η ∈ M(D) positive measure on D,
write η = µ+ ν, µ = η|D, ν = η|∂D.

ω(z) =

∫
D

log
∣∣∣1− wz

z − w

∣∣∣dµ(w) +

∫
T

1− |z |2

|ζ − z |2
dν(ζ)

:= Uµ(z) + Pν(z).

Weighted Dirichlet space Dω is the space of f ∈ Hol(D)∫
D
|f ′(z)|2ω(z)dA(z) < +∞.



Dirichlet type spaces

I H2 = H2(D) the Hardy space, µ = δ0, ν ≡ 0

‖f ‖2
H2 = |f (0)|2 +

2

π

∫
D
|f ′(z)|2 log

1

|z |
dA(z)

≈ |f (0)|2 +
2

π

∫
D
|f ′(z)|2(1− |z |)dA(z)

I D Dirichlet space, µ ≡ 0, ν = arclength measure on T

‖f ‖2
D = ‖f ‖2

H2 +

∫
D
|f ′(z)|2dA(z)



Dirichlet type spaces

I Dp = {f ∈ H(D) :
∫
D |f
′(z)|2(1− |z |)pdA(z) <∞}

I Dν when µ ≡ 0 introduced by Stefan Richter (1991) - two
isometries.
I Dω general studied in Habilitation thesis of Alexandru Aleman
(1993).

Dω ⊂ H2

We are interested in
I Möbius invariant spaces Qp in connection with Dirichlet type
spaces



Möbius invariant spaces

ϕ ∈ Aut(D) =⇒ ϕ(z) = e iθσa(z), σa(z) = a−z
1−az , θ ∈ R, a ∈

D
X a Banach space of analytic functions on D is called Möbius
invariant if

f ∈ X , ϕ ∈ Aut(D) =⇒ f ◦ ϕ ∈ X , ‖f ◦ ϕ‖X = ‖f ‖X

• Bloch space B : ‖f ‖B = supz∈D(1− |z |2)|f ′(z)| <∞
• BMOA: analytic functions on D with boundary values of bdd
mean oscillation

‖f ‖BMOA = |f (0)|+ sup
a∈D
‖f ◦ σa − f (a)‖H2



Möbius invariant spaces

• Qp, 0 ≤ p <∞ : 1995, R. Aulaskari, J. Xiao and R. Zhao,
‖f ‖2
Qp

= supa∈D
∫
D |f
′(z)|2

(
1− |σa(z)|2

)p
dA(z) <∞

p = 0 =⇒ Q0 = D Dirichlet space
p = 1 =⇒ Q1 = BMOA,
1 < p <∞ =⇒ Qp = B



Möbius invariant spaces

(X , ‖.‖X ) a Banach space of analytic functions in D containing all
constants.
A. Aleman and A. Simbotin: M(X ) the Möbius invariant function
space generated by X

‖f ‖M(X ) = sup
ϕ∈Aut(D)

‖f ◦ ϕ− f (ϕ(0))‖X <∞

X = Hp, 0 < p <∞ =⇒ M(X ) = BMOA
X = Ap, 0 < p <∞ =⇒ M(X ) = B
X = Dp, 0 < p < 1 =⇒ M(X ) = Qp



Space Dµ,p

Weighted Green function Let µ be a positive Borel measure on D,
p > 0,

Uµ,p(z) =

∫
D

(1− |σz(w)|2)pdµ(w)

Dµ,p : ‖f ‖2
Dµ,p =

∫
D |f
′(z)|2Uµ,p(z)dA(z) <∞ (BGP, 2017)

0 < p ≤ 1 =⇒ Uµ,p is superharmonic, otherwise not

µ = δ0 =⇒ Dµ,p = Dp



Möbius invariant spaces

Denote by F the set of all finite positive Borel measures and by P
the set of all probability measures on D.

Theorem (BGP, 2017)

Let µ ∈ F and 0 < p <∞. Then the following are true.

(i) Qp $ Dµ,p.
(ii) Qp = M(Dµ,p).

(iii) Qp =
⋂
µ∈PDµ,p.

Moreover,
‖f ‖Qp = sup

µ∈P
‖f ‖Dµ,p



Proof of (ii) and (iii)

For (ii), Qp ⊂ Dµ,p ⊂ Dp implies

Qp = M(Qp) ⊂ M(Dµ,p) ⊂ M(Dp) = Qp

Qp ⊂
⋂
µ∈P
Dµ,p clear!

Suppose f 6∈ Qp, that is, supw ‖f ‖Dδw ,p =∞. Choose wk ∈ D so
that

βk = ‖f ‖Dδwk ,p ≥ 2k .

Set

ν =
∞∑
k=1

2−kδwk
.

Then ν ∈ P, and ‖f ‖2
Dν,p =

∑∞
k=1 2−kβk =∞. Hence,

f 6∈
⋂
µ∈PDµ,p.



Composition operators

ϕ : D→ D analytic self-map of unit disk D induces a composition
operator

Cϕf (z) = f (ϕ(z)), z ∈ D, f ∈ H(D)

• Studied like crazy on most known spaces

Nevanlinna counting function of ϕ with respect to µ ≥ 0, p > 0

Nϕ,µ,p(z) =
∑

ϕ(a)=z

Uµ,p(a), z ∈ D,

multiplicities are taken into account



Change of variables∫
D
|(f ◦ ϕ)′(z)|2Uµ,p(z)dA(z) =

∫
D
|f ′(z)|2Nϕ,µ,p(z)dA(z)

Subaveraging for 0 < p ≤ 1

Nϕ,µ,p(z) ≤ 1

Area(∆z)

∫
∆z

Nϕ,µ,p(w)dA(w)

for any open disk ∆z ⊂⊂ D with center at z .



Main theorem

Theorem (G, 201?)

Let p > 1, p′ > 0, and let ϕ be an analytic self-map of D. Then
the following conditions are equivalent.

1 Cϕ : B = Qp → Qp′ is bounded.

2

sup
µ∈P

∫
D

Nϕ,µ,p′(z)

(1− |z |2)2
dA(z) <∞.

0 < p′ ≤ 1

3 For every µ ∈ P, there exists a ν ∈ P such that

Cϕ : Dν,p → Dµ,p′ .



Main theorem, part 2

Theorem (G, 201?)

Let p > 1, 0 < p′ ≤ 1, and let ϕ be an analytic self-map of D.
Then the following conditions are equivalent.

1 Cϕ : B = Qp → Qp′ is compact.

2 For every µ ∈ P,

lim
|z|→1

inf
ν∈P

sup
z

Nϕ,µ,p′(z)

Uν,p(z)
= 0.

3 For every µ ∈ P, there exists a ν ∈ P such that

Cϕ : Dν,p → Dµ,p′

is compact.



Composition operators

Previous work
When p′ = 1, equivalence of (i) and (ii) in Main Theorem
”generalizes” a characterization of bounded/compact
Cϕ : B → BMOA by S. Makhmutov and M. Tjani.

Cϕ : B → B studied by many others:
K. Madigan and A. Matheson; M. Tjani; H. Wulan, D. Zheng and
K. Zhu, ....



Composition operators

Theorem (BGP, 2018 when p=1)

Let µ be a positive Borel measure on D, 0 < p ≤ 1, and let ϕ be
an analytic self-map of D. Then the following conditions are
equivalent.

1 Cϕ is bounded on Dµ,p.
2

Nϕ,µ,p(w) = O(Uµ,p(w)), as |w | → 1.

3

1

A(∆w )

∫
∆w

Nϕ,µ,p(z)dA(z) = O(Uµ,p(w)), as |w | → 1,

where

∆w = {z ∈ D : |z − w | < 1

2
(1− |w |)}.



Composition operators

Theorem (BGP, 2018 when p=1)

Let µ be a positive Borel measure on D, 0 < p ≤ 1, and let
ϕ : D→ D be analytic. Then the following conditions are
equivalent.

1 Cϕ is compact on Dµ,p.
2

Nϕ,µ,p(w) = o(Uµ,p(w)), as |w | → 1.

3

1

A(∆w )

∫
∆w

Nϕ,µ,p(z)dA(z) = o(Uµ,p(w)), as |w | → 1,

where

∆w = {z ∈ D : |z − w | < 1

2
(1− |w |)}.



Composition operators

Theorem (G, 201?)

Let µ be a positive Borel measure on D, p > 0, 0 < p′ ≤ 1, and let
ϕ be an analytic self-map of D. Then the following conditions are
equivalent.

1 Cϕ : Dµ,p → Qp′ is bounded.

2

sup
ν∈P

Nϕ,ν,p′(w) = O(Uµ,p(w)), as |w | → 1.

In this case, ‖Cϕ‖ ≈ sup 1−|ϕ(0)|
2

<|w |<1
supν∈P

Nϕ,ν,p′ (w)

Uµ,p(w) , and

‖Cϕ‖e ≈ lim sup
|w |→1

sup
ν∈P

Nϕ,ν,p′(w)

Uµ,p(w)



Composition operators

Theorem (G, 201?)

Let µ be a positive Borel measure on D, p > 0, 0 < p′ ≤ 1, and let
ϕ be an analytic self-map of D. Then the following conditions are
equivalent.

1 Cϕ : Dµ,p → Qp′ is compact.

2

sup
ν∈P

Nϕ,ν,p′(w) = o(Uµ,p(w)), as |w | → 1.



Open problem

It is currently an open problem to characterize (in terms of
function-theoretic properties of ϕ) bounded or compact
composition operators on Qp for 0 < p < 1.
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spaces, J. Reine Angew. Math. 363 (1985), 110-145.

R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets
of BMOA and UBC , Analysis, 15 (1995), 101-121.



References
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