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DIRICHLET TYPE SPACES

SETUP

» D= {z:|z| <1} open unit disk in C.
» 7 € M(D) positive measure on D,

write n = p+ v, = nlp, v = n|ap.

w(z) = /D;mg‘lz__

= Uu(2) + Pu(2).
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Weighted Dirichlet space D,, is the space of f € Hol(D)

[ IF@Pe()0AG) < +ox.
D



DIRICHLET TYPE SPACES

» H2 = H?(D) the Hardy space, = 6o, v =0
2 1
I3 = IFOP+2 [ IF()P1og - dA2)
™ Jp 2|
2
~ )+ /D |F(2)|%(1 — |2])dA(2)

» D Dirichlet space, u = 0, v = arclength measure on T
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DIRICHLET TYPE SPACES

» D, ={f € HD): [, |f'(z)*(1 — |z])PdA(z) < oo}
» D, when p =0 |ntroduced by Stefan Richter (1991) - two
isometries.
» D,, general studied in Habilitation thesis of Alexandru Aleman
(1993).

D, C H?

We are interested in
» Mobius invariant spaces Qp in connection with Dirichlet type
spaces



MOBIUS INVARIANT SPACES

¢ € Aut(D) => p(z) = e0,(2), oa(z)=F£Z, 0€R, ac
D

X a Banach space of analytic functions on D is called Mobius
invariant if

feX,peAut(D)=fopeX, |[foyp|x=I|flx
e Bloch space B: ||fl|lz = sup,ep(l — |2)|f'(2)] < oo

e BMOA: analytic functions on D with boundary values of bdd
mean oscillation

IfllBmoa = [£(0)[ + sup [[f o 05 — f(a)|| 2
aeD



MOBIUS INVARIANT SPACES

e 0,,0<p<oo: 1995 R. Aulaskari, J. Xiao and R. Zhao,
1113, = supaep Jp [F/(2)1* (1 = |oa(2)[?)? dA(z) < oo

p = 0= Qy = D Dirichlet space
p=1=— Q1 = BMOA,
l<p<oo= Q,=D8



MOBIUS INVARIANT SPACES

(X, ||.llx) a Banach space of analytic functions in D containing all

constants.
A. Aleman and A. Simbotin: M(X) the Mobius invariant function

space generated by X

Ifllmexy = sup_ |If oo = F(p(0))[[x < o0
peAut(D)

X=HP,0<p<oo = M(X)=BMOA
X=AP0<p<oo = MX)=2B
X=D,0<p<l = MX)=0,



SPACE D, ,

Weighted Green function Let i be a positive Borel measure on D,
p >0,

Unp(2) = /D (1 |ou(w) P)Pdu(w)

Dup: ||fH%u,p = [p If'(2)]2U,.,p(2)dA(z) < oo (BGP, 2017)
0<p<1 = Up,p issuperharmonic, otherwise not

H = (50 — ,DMP = Dp



MOBIUS INVARIANT SPACES

Denote by T the set of all finite positive Borel measures and by P
the set of all probability measures on D.

THEOREM (BGP, 2017)
Let y € F and 0 < p < co. Then the following are true.
(1) Qp & Dup-
(1) Qp = M(D.p)-
(1) Qp = (Nuep Ppup-
Moreover,
1flle, = sup || f]D,.,
pep



PROOF OF (11) AND (III)

For (ii), Qp C D, p C Dy implies

9Qp = M(Qp) C M(Dy,p) C M(Dp) = Qp

Qp C ﬂ D,p clear!
pep

Suppose f ¢ Qp, that is, sup,, [|f|[p;, , = 0o. Choose wy € D so
that

B = Iflps,, , = 2%

Set
(o]
V= Z 2_k5wk.
k=1

Then v € P, and [|f[[3, | = 3732, 2%k = oo. Hence,



COMPOSITION OPERATORS

@ : D — D analytic self-map of unit disk I induces a composition
operator

Cof(z) = f(p(2)), zeD, feHD)

e Studied like crazy on most known spaces

Nevanlinna counting function of ¢ with respect to 4t >0, p > 0

N, u,p(2 Z Upi,p( ze D,
p(a)=z

multiplicities are taken into account



Change of variables

[ 1(F0 Y @PULpl2)dA) = [ 1PN pl2)dA(:)
D D

Subaveraging for 0 < p <1

N, p(2) < Areal(Az) /A N,y (w)dA(w)

z

for any open disk A, CC D with center at z.



MAIN THEOREM

THEOREM (G, 2017)

Let p>1, p' >0, and let © be an analytic selmap of D. Then
the following conditions are equivalent.

@ C,:B=Q,— Qp is bounded.

(2]
N%mp’(z) dA

SUP/ —HE S dA(z) < oo.
nep Jp (1 —12[?)?

0<p <1
® For every u € P, there exists a v € P such that

Co:Dup = Dup-



MAIN THEOREM, PART 2

THEOREM (G, 2017)

Let p>1,0< p' <1, and let p be an analytic self~-map of .
Then the following conditions are equivalent.

O C,:B=09,— Qy is compact.
@ fFor every i € P,

N (z
lim inf sup Bl ) (2)
lz|-1veP 2 Uy p(2)

=0.
® For every i € P, there exists a v € P such that
C@ : DMP — Du,p/

is compact.



COMPOSITION OPERATORS

Previous work

When p’ = 1, equivalence of (i) and (ii) in Main Theorem
" generalizes” a characterization of bounded/compact

C, : B— BMOA by S. Makhmutov and M. Tjani.

C, : B — B studied by many others:
K. Madigan and A. Matheson; M. Tjani; H. Wulan, D. Zheng and
K. Zhu, ....



COMPOSITION OPERATORS

THEOREM (BGP, 2018 WHEN pP=1)

Let i be a positive Borel measure on D, 0 < p <1, and let ¢ be
an analytic self-map of D. Then the following conditions are

equivalent.
@ C, is bounded on D, p.
(2]
N pi.p(W) = O(Uy,p(w)), as |w| — L.
(8]




COMPOSITION OPERATORS

THEOREM (BGP, 2018 WHEN P=1)

Let i be a positive Borel measure on D, 0 < p <1, and let
@ : D — I be analytic. Then the following conditions are
equivalent.

@ C, is compact on Dy, p.

Nip,pi.p(w) = o(Up,p(w)), as [w| — L.

1
A, ={zeD: \z—w\<§(1—|wl)}.



COMPOSITION OPERATORS

THEOREM (G, 2017)

Let p be a positive Borel measure on D, p >0, 0 < p’ <1, and let
© be an analytic self~map of . Then the following conditions are
equivalent.
@ C,:D,, — Qp is bounded.
(2]
iLe]thN v (W) = O(Upp(w)), as |w| — 1.

N o (W)
In this case, ||Cy|| =~ supi- L120) () <1 SUPveP % and

N, /(W)
| Colle ~ lim sup sup —22P 22
ohe |w|—=1 veP U,u,p(W)



COMPOSITION OPERATORS

THEOREM (G, 2017)

Let 1 be a positive Borel measure onD, p >0, 0 < p’ <1, and let
© be an analytic self~map of . Then the following conditions are
equivalent.

@ C,:D,, — Qp is compact.

(2]

sup Ny, o (W) = o(U,, p(w)), as |w| — 1.
veP



OPEN PROBLEM

It is currently an open problem to characterize (in terms of
function-theoretic properties of ¢) bounded or compact
composition operators on Q, for 0 < p < 1.
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