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Filled Julia set Kr = {z € C: {f"(z)}nen is bounded}
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Figure: The airplane map p(z) = z° + ¢, c = —1.755
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Computability

Definition
A real number « is called computable if there is an algorithm
(Turing Machine) which given n € N produces a number ¢(n) such

that
o — (n)] < 27"
A 277 approximation of a set S can be described using a function
1, if d(z,S) <271,
hs(n,z) =< 0, if d(z,S)>2-27""1

Oor1l otherwise,

where n € N and z = (i/2"+2 j/2"+2) i j € Z.
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Computational complexity

h(d)=0

Definition

S C R? is computable in time t(n) if there is an algorithm which
computes h(n,e) in time t(n).
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Definition
A function ¢ : N — D" is called an oracle for an element x € R", if
ll¢(m) — x|| <2=™ for all m € N, where | - || stands for the

Euclidian norm in R".

Definition

The Julia set Jf of a map f is called computable in time t(n), if
there is an algorithm with an oracle for the values of f, which
computes h(n,e) for S = J¢ in time t(n). It is called poly-time if
t(n) can be bounded by a polynomial.
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A rational map f is called hyperbolic if there is a Riemannian
metric 1 on a neighborhood of the Julia set J¢ in which f is
strictly expanding:
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for any z € Jr and any tangent vector v.
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Poly-time computability of hyperbolic Julia sets

A rational map f is called hyperbolic if there is a Riemannian
metric 1 on a neighborhood of the Julia set J¢ in which f is
strictly expanding:

IDE ()l > (V]|

for any z € Jr and any tangent vector v.
Proposition (Milnor)

A rational map f is hyperbolic if and only if every critical orbit of f
either converges to an attracting (or a super-attracting) cycle, or is
periodic.

Theorem (Braverman 04, Rettinger 05)

For any d > 2 there exists a Turing Machine with an oracle for the
coefficients of a rational map of degree d which computes the Julia
set of every hyperbolic rational map in polynomial time.
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constant v > 1 on U. Fix sufficiently large number C (of order
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Distance estimator

Let f(z) be a hyperbolic rational map. Compute a closed
neighborhood U of Jr which does not contain any attracting
periodic points or critical points and such that u is expanding with
constant v > 1 on U. Fix sufficiently large number C (of order
log2/ log~y).
Algorithm:
P given a dyadic point z and n € N compute approximate values
of z, = fk(z), 1< k<Cn
» if zx € U forall 1 < k< Cnthend(z,Jr) <277,
» if zx ¢ U for some 1 < k < Cn then by Koebe distortion
Theorem up to a constant factor

d(zk, Jr) ~ 1
|DFX(z)| ~ [DFk(z)|"

d(z, Jr) =



Distance estimator
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For a holomorphic map f a periodic point zg of period p is
parabolic if DfP(zy) = exp(2mif),6 € Q, and fP is not conjugated
to a rotation near z.



Poly-time computability of parabolic Julia sets

For a holomorphic map f a periodic point zg of period p is
parabolic if DfP(zy) = exp(2mif),6 € Q, and fP is not conjugated
to a rotation near z.

Theorem (Braverman 06)

For any d > 2 there exists a Turing Machine M with an oracle for
the coefficients of a rational map f of degree d such that the
following is true. Given that every critical orbit of f converges
either to an attracting or to a parabolic orbit, M computes Jr in
polynomial time.
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Speeding up the dynamics

For simplicity, assume f(zp) = zp and Df(z) = 1.
Problem: the dynamics of f near z; is exponentially slow.

Solution 1 (Braverman): show directly that exponential iterates
of f near zy can be computed in a polynomial time.



Speeding up the dynamics

For simplicity, assume f(zp) = zp and Df(z) = 1.
Problem: the dynamics of f near z; is exponentially slow.

Solution 1 (Braverman): show directly that exponential iterates
of f near zy can be computed in a polynomial time.

Solution 2: Fatou coordinates (ﬁfa’, conjugate f to z — z + 1 near
20; ;’, can by approximated effectively by the formal solutions of
the Fatou coordinate equation ¢ o f(z) = z+ 1 (Dudko-Sauzin 14).



Siegel periodic points

For a holomorphic map f a periodic point zg of period p is called
Siegel if DfP(zy) = exp(27if),0 € R\ Q, and fP is conjugated (by
a conformal map) to a rotation near zy. The maximal domain
around zp on which such conjugacy exists is called Siegel disk.
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Siegel periodic points

For a holomorphic map f a periodic point zg of period p is called
Siegel if DfP(zy) = exp(27if),0 € R\ Q, and fP is conjugated (by
a conformal map) to a rotation near zy. The maximal domain
around zp on which such conjugacy exists is called Siegel disk.

Consider Py(z) = exp(2mif)z + z?, 0 € [0,1). Let p,/qgn, be the

sequence of the closest rational approximations of # and

BE) =Y log(qn+1)

dn

Theorem (Brjuno 72, Yoccoz 81)
Origin is a Siegel point for Py iff B(0) < oo.
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Jp, is not computable. Moreover, 6 can be chosen computable and
such that Jp, is locally connected.
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Theorem (Braverman-Yampolsky 06, 09)

There exists Py with a Siegel fixed point at the origin such that
Jp, is not computable. Moreover, 6 can be chosen computable and
such that Jp, is locally connected.

Theorem (Binder-Braverman-Yampolsky 06)

There exists Siegel parameters ¢ for which Jp, has arbitrarily large
computational complexity.

Let A(0) be the Siegel disk of Py, p(0) = inf,can(g) 2| be the
inner radius of A(#) and r(6) be the conformal radius of A(6).
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Constructing non-computable Siegel Julia sets

Theorem (Binder-Braverman-Yampolsky 06)
The following statements are equivalent:

» Jp, is computable;

» p(0) is computable;

» r(0) is computable.

A number r is called right-computable if there exists an algorithm
which produces a decreasing sequence r, convergent to r.

Theorem (Braverman-Yampolsky 06)

Let r € (0,0.1]. There exists § such that Py has a Siegel disk with
r(0) = r iff r is right-computable.

Take r € (0,0.1] right-computable but not computable. Let 6 be
such that r(0) = r. Then Jp, is not computalbe.
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Let F be the fixed point of the period-doubling renormalization
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Poly-time computability of the Feigenbaum Julia set

Let F be the fixed point of the period-doubling renormalization
(also referred to as the Feigenbaum map). The map F is the
solution of the Cvitanovi¢-Feigenbaum equation:

F(z) = —1F?()z),
F(0) = 1
F"(0) # 0.

Theorem (Dudko-Yampolsky 16)
The Julia set Jg is poly-time computable.
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Speeding up the dynamics

Problem: the Julia set Jr has two computational difficulties:
» the dynamics is exponentially slow near the origin;
> the critical point at the origin is recurrent.

Solution: the dynamics can be speeded up by:
F2(2) = (=N)KF(z/X%), |z < CAX.

For z with d(z, JF) &~ 27" polynomial number of speeded up
iterations is sufficient to escape e-neighborhood of Jr. Moreover,
the distortion of the iterate is bounded near z.

We used the algorithms designed for computing Jg in the
computer-assisted proof of
Theorem (Dudko-Sutherland 17)

The Julia set Jr has Hausdorff dimension less than two (and
therefore its Lebesgue area is zero).



Collet-Eckmann maps

Definition

A non-hyperbolic rational map f is called Collet-Eckmann if there
exist constants C,~ > 0 such that the following holds: for any
critical point ¢ € Jr of f whose forward orbit does not contain any
critical points one has:

|Df"(f(c))| = Ce’" for any n e N.



Collet-Eckmann maps

Definition

A non-hyperbolic rational map f is called Collet-Eckmann if there
exist constants C,~ > 0 such that the following holds: for any
critical point ¢ € Jr of f whose forward orbit does not contain any
critical points one has:

|Df"(f(c))| = Ce’" for any n e N.

Theorem (Avila-Moreira 05)

For almost every real parameter ¢ the map f.(z) = 7% + c is either
Collet-Eckmann or hyperbolic.
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A rational map f satistfies Exponential Shrinking of Components
(ESC) condition if there exists A < 1 and r > 0 such that for every
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Exponential Shrinking of Components

Definition

A rational map f satistfies Exponential Shrinking of Components
(ESC) condition if there exists A < 1 and r > 0 such that for every
n €N, any x € Jr and any connected component W of
f~"(U,(x)) one has diam(W) < A".

Theorem (Przytycki—Rivera-Letelier—Smirnov 03)

Collet-Eckmann condition implies Exponential Shrinking of
Components condition.



Poly-time computability of CE Julia sets

Theorem (Dudko-Yampolsky 17)

For each d > 2 there exists an oracle Turing Machine M with an
oracle for the coefficients of a rational map f satisfying ESC,

which, given a certain non-uniform information, computes J¢ in
polynomial time.



Poly-time computability of CE Julia sets

Theorem (Dudko-Yampolsky 17)

For each d > 2 there exists an oracle Turing Machine M with an
oracle for the coefficients of a rational map f satisfying ESC,
which, given a certain non-uniform information, computes J¢ in
polynomial time.

Corollary

For almost every real value of the parameter c, the Julia set J. is
poly-time.
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Distance estimator for CE maps

By definition, for an ESC map f one can find e >0 and C >0
such that for any point z with d(z, Jr) ~ 27" one has

d(F"(2), Jf) > .

Problem: f/(z) can be close to critical points many times for
0 < i < Cn. Therefore, the distortion of f¢" near z cannot be
bounded by a constant.

Solution: we show that f/(z),0 < i < Cn, approach critical points
at most K/n times and the distortion of " near z is bounded by
MY This allows to estimate d(z, Jr) up to MV",
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Other results

» Filled Julia sets of polynomials are computable
(Braverman-Yampolsky 08).

» Brolin-Lyubich measure of every rational map is computable
(Binder-Braverman-Rojas-Yampolsky 11).

» There exists a computable ¢ € C and a computable angle
a € R such that the impression of the external angle
corresponding to « is non-computable
(Binder-Rojas-Yampolsky 15).

» There exists a (natural) family of cubic polynomials for which
the connectedness locus (Mandelbrot-like set) is
non-computable (Coronel-Rojas-Yampolsky 17).



Open questions

» |s it true that for almost all a) quadratic, b) polynomial, ¢)
rational functions the Julia set is poly-time?



Open questions

» |s it true that for almost all a) quadratic, b) polynomial, ¢)
rational functions the Julia set is poly-time?

» Does there exists a quadratic Julia set with a Cremer fixed
point (i.e.with multiplier exp(27if),0 € R\ Q,
non-linearizable) of tractable computational complexity?



Open questions

» |s it true that for almost all a) quadratic, b) polynomial, ¢)
rational functions the Julia set is poly-time?

» Does there exists a quadratic Julia set with a Cremer fixed
point (i.e.with multiplier exp(27if),0 € R\ Q,
non-linearizable) of tractable computational complexity?

» Are Julia sets of all Feigenbaum maps (infinitely

renormalizable with bounded combinatorics and a priori
bounds) poly-time?



Open questions

» |s it true that for almost all a) quadratic, b) polynomial, ¢)
rational functions the Julia set is poly-time?

» Does there exists a quadratic Julia set with a Cremer fixed
point (i.e.with multiplier exp(27if),0 € R\ Q,
non-linearizable) of tractable computational complexity?

» Are Julia sets of all Feigenbaum maps (infinitely
renormalizable with bounded combinatorics and a priori
bounds) poly-time?

» What can be said about computability and computational
complexity of Julia sets (or escaping, or fast escaping sets) of
transcendental entire maps?



Thank you!



